ترغب بنشر مسار تعليمي؟ اضغط هنا

WKB propagators in position and momentum space for a linear potential with a ceiling boundary

104   0   0.0 ( 0 )
 نشر من قبل Stephen A. Fulling
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As a model for the semiclassical analysis of quantum-mechanical systems with both potentials and boundary conditions, we construct the WKB propagator for a linear potential sloping away from an impenetrable boundary. First, we find all classical paths from point $y$ to point $x$ in time $t$ and calculate the corresponding action and amplitude functions. A large part of space-time turns out to be classically inaccessible, and the boundary of this region is a caustic of an unusual type, where the amplitude vanishes instead of diverging. We show that this curve is the limit of caustics in the usual sense when the reflecting boundary is approximated by steeply rising smooth potentials. Then, to improve the WKB approximation we construct the propagator for initial data in momentum space; this requires classifying the interesting variety of classical paths with initial momentum $p$ arriving at $x$ after time $t$. The two approximate propagators are compared by applying them to Gaussian initial packets by numerical integration; the results show physically expected behavior, with advantages to the momentum-based propagator in the classically forbidden regime (large $t$).



قيم البحث

اقرأ أيضاً

For a particle moving on a half-line or in an interval the operator $hat p = - i partial_x$ is not self-adjoint and thus does not qualify as the physical momentum. Consequently canonical quantization based on $hat p$ fails. Based upon a new concept f or a self-adjoint momentum operator $hat p_R$, we show that canonical quantization can indeed be implemented on the half-line and on an interval. Both the Hamiltonian $hat H$ and the momentum operator $hat p_R$ are endowed with self-adjoint extension parameters that characterize the corresponding domains $D(hat H)$ and $D(hat p_R)$ in the Hilbert space. When one replaces Poisson brackets by commutators, one obtains meaningful results only if the corresponding operator domains are properly taken into account. The new concept for the momentum is used to describe the results of momentum measurements of a quantum mechanical particle that is reflected at impenetrable boundaries, either at the end of the half-line or at the two ends of an interval.
Based on his extension of the classical argument of Einstein, Podolsky and Rosen, Schrodinger observed that, in certain quantum states associated with pairs of particles that can be far away from one another, the result of the measurement of an obser vable associated with one particle is perfectly correlated with the result of the measurement of another observable associated with the other particle. Combining this with the assumption of locality and some no hidden variables theorems, we showed in a previous paper [11] that this yields a contradiction. This means that the assumption of locality is false, and thus provides us with another demonstration of quantum nonlocality that does not involve Bells (or any other) inequalities. In [11] we introduced only spin-like observables acting on finite dimensional Hilbert spaces. Here we will give a similar argument using the variables originally used by Einstein, Podolsky and Rosen, namely position and momentum.
We introduce a method of quantum tomography for a continuous variable system in position and momentum space. We consider a single two-level probe interacting with a quantum harmonic oscillator by means of a class of Hamiltonians, linear in position a nd momentum variables, during a tunable time span. We study two cases: the reconstruction of the wavefunctions of pure states and the direct measurement of the density matrix of mixed states. We show that our method can be applied to several physical systems where high quantum control can be experimentally achieved.
For a particle in a box, the operator $- i partial_x$ is not Hermitean. We provide an alternative construction of a momentum operator $p = p_R + i p_I$, which has a Hermitean component $p_R$ that can be extended to a self-adjoint operator, as well as an anti-Hermitean component $i p_I$. This leads to a description of momentum measurements performed on a particle that is strictly limited to the interior of a box.
220 - Thomas Alazard 2007
We consider the semi-classical limit for the Gross-Pitaevskii equation. In order to consider non-trivial boundary conditions at infinity, we work in Zhidkov spaces rather than in Sobolev spaces. For the usual cubic nonlinearity, we obtain a point-wis e description of the wave function as the Planck constant goes to zero, so long as no singularity appears in the limit system. For a cubic-quintic nonlinearity, we show that working with analytic data may be necessary and sufficient to obtain a similar result.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا