ترغب بنشر مسار تعليمي؟ اضغط هنا

Extended friction elucidates the breakdown of fast water transport in graphene oxide membranes

104   0   0.0 ( 0 )
 نشر من قبل Andrea Montessori
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The understanding of water transport in graphene oxide (GO) membranes stands out as a major theoretical problem in graphene research. Notwithstanding the intense efforts devoted to the subject in the recent years, a consolidated picture of water transport in GO membranes is yet to emerge. By performing mesoscale simulations of water transport in ultrathin GO membranes, we show that even small amounts of oxygen functionalities can lead to a dramatic drop of the GO permeability, in line with experimental findings. The coexistence of bulk viscous dissipation and spatially extended molecular friction results in a major decrease of both slip and bulk flow, thereby suppressing the fast water transport regime observed in pristine graphene nanochannels. Inspection of the flow structure reveals an inverted curvature in the near-wall region, which connects smoothly with a parabolic profile in the bulk region. Such inverted curvature is a distinctive signature of the coexistence between single-particle Langevin friction and collective hydrodynamics. The present mesoscopic model with spatially extended friction may offer a computationally efficient tool for future simulations of water transport in nanomaterials.



قيم البحث

اقرأ أيضاً

165 - Ning Wei , Xinsheng Peng , 2014
Water transport through graphene-derived membranes has gained much interest recently due to its promising potential in filtration and separation applications. In this work, we explore water permeation in graphene oxide membranes using atomistic simul ations, by considering flow through interlayer gallery, expanded pores such as wrinkles of interedge spaces, and pores within the sheet. We find that although flow enhancement can be established by nanoconfinement, fast water transport through pristine graphene channels is prohibited by a prominent side-pinning effect from capillaries formed between oxidized regions. We then discuss flow enhancement in situations according to several recent experiments. These understandings are finally integrated into a complete picture to understand water permeation through the layer-by-layer and porous microstructure and could guide rational design of functional membranes for energy and environmental applications.
Developing smart membranes that allow precise and reversible control of molecular permeation using external stimuli would be of intense interest for many areas of science: from physics and chemistry to life-sciences. In particular, electrical control of water permeation through membranes is a long-sought objective and is of crucial importance for healthcare and related areas. Currently, such adjustable membranes are limited to the modulation of wetting of the membranes and controlled ion transport, but not the controlled mass flow of water. Despite intensive theoretical work yielding conflicting results, the experimental realisation of electrically controlled water permeation has not yet been achieved. Here we report electrically controlled water permeation through micrometre-thick graphene oxide (GO) membranes. By controllable electric breakdown, conductive filaments are created in the GO membrane. The electric field concentrated around such current carrying filaments leads to controllable ionisation of water molecules in graphene capillaries, allowing precise control of water permeation: from ultrafast permeation to complete blocking. Our work opens up an avenue for developing smart membrane technologies and can revolutionize the field of artificial biological systems, tissue engineering and filtration.
139 - A. Jenkins , S. Baumann , H. Zhou 2020
Ohms law describes the proportionality of current density and electric field. In solid-state conductors, Ohms law emerges due to electron scattering processes that relax the electrical current. Here, we use nitrogen-vacancy center magnetometry to dir ectly image the local breakdown of Ohms law in a narrow constriction fabricated in a high mobility graphene monolayer. Ohmic flow is visible at room temperature as current concentration on the constriction edges, with flow profiles entirely determined by sample geometry. However, as the temperature is lowered below 200 K, the current concentrates near the constriction center. The change in the flow pattern is consistent with a crossover from diffusive to viscous electron transport dominated by electron-electron scattering processes that do not relax current.
There has been intense interest in filtration and separation properties of graphene-based materials that can have well-defined nanometer pores and exhibit low frictional water flow inside them. Here we investigate molecular permeation through graphen e oxide laminates. They are vacuum-tight in the dry state but, if immersed in water, act as molecular sieves blocking all solutes with hydrated radii larger than 4.5A. Smaller ions permeate through the membranes with little impedance, many orders of magnitude faster than the diffusion mechanism can account for. We explain this behavior by a network of nanocapillaries that open up in the hydrated state and accept only species that fit in. The ultrafast separation of small salts is attributed to an ion sponge effect that results in highly concentrated salt solutions inside graphene capillaries.
We investigate the dynamics of water confined in soft ionic nano-assemblies, an issue critical for a general understanding of the multi-scale structure-function interplay in advanced materials. We focus in particular on hydrated perfluoro-sulfonic ac id compounds employed as electrolytes in fuel cells. These materials form phase-separated morphologies that show outstanding proton-conducting properties, directly related to the state and dynamics of the absorbed water. We have quantified water motion and ion transport by combining Quasi Elastic Neutron Scattering, Pulsed Field Gradient Nuclear Magnetic Resonance, and Molecular Dynamics computer simulation. Effective water and ion diffusion coefficients have been determined together with their variation upon hydration at the relevant atomic, nanoscopic and macroscopic scales, providing a complete picture of transport. We demonstrate that confinement at the nanoscale and direct interaction with the charged interfaces produce anomalous sub-diffusion, due to a heterogeneous space-dependent dynamics within the ionic nanochannels. This is irrespective of the details of the chemistry of the hydrophobic confining matrix, confirming the statistical significance of our conclusions. Our findings turn out to indicate interesting connections and possibilities of cross-fertilization with other domains, including biophysics. They also establish fruitful correspondences with advanced topics in statistical mechanics, resulting in new possibilities for the analysis of Neutron scattering data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا