ﻻ يوجد ملخص باللغة العربية
Schnorr showed that a real is Martin-Loef random if and only if all of its initial segments are incompressible with respect to prefix-free complexity. Fortnow and independently Nies, Stephan and Terwijn noticed that this statement remains true if we can merely require that the initial segments of the real corresponding to a computable increasing sequence of lengths are incompressible. The purpose of this note is to establish the following generalization of this fact. We show that a real is X Martin-Loef random if and only if its initial segments corresponding to a pointedly X-computable sequence (r_n) (where r_n is computable from X in a self-delimiting way, so that at most the first r_n bits of X are queried in the computation) of lengths are incompressible. On the other hand we also show that there are reals which are very far from being Martin-Loef random, yet they compute an increasing sequence of lengths at which their initial segments are incompressible.
In this paper we investigate algorithmic randomness on more general spaces than the Cantor space, namely computable metric spaces. To do this, we first develop a unified framework allowing computations with probability measures. We show that any comp
The communication complexity of many fundamental problems reduces greatly when the communicating parties share randomness that is independent of the inputs to the communication task. Natural communication processes (say between humans) however often
A Santha-Vazirani (SV) source is a sequence of random bits where the conditional distribution of each bit, given the previous bits, can be partially controlled by an adversary. Santha and Vazirani show that deterministic randomness extraction from th
A classic result in algorithmic information theory is that every infinite binary sequence is computable from a Martin-Loef random infinite binary sequence. Proved independently by Kucera and Gacs, this result answered a question by Charles Bennett an
Subsets of F_2^n that are eps-biased, meaning that the parity of any set of bits is even or odd with probability eps close to 1/2, are powerful tools for derandomization. A simple randomized construction shows that such sets exist of size O(n/eps^2),