ﻻ يوجد ملخص باللغة العربية
A emph{proper $t$-edge-coloring} of a graph $G$ is a mapping $alpha: E(G)rightarrow {1,ldots,t}$ such that all colors are used, and $alpha(e) eq alpha(e^{prime})$ for every pair of adjacent edges $e,e^{prime}in E(G)$. If $alpha $ is a proper edge-coloring of a graph $G$ and $vin V(G)$, then emph{the spectrum of a vertex $v$}, denoted by $Sleft(v,alpha right)$, is the set of all colors appearing on edges incident to $v$. emph{The deficiency of $alpha$ at vertex $vin V(G)$}, denoted by $def(v,alpha)$, is the minimum number of integers which must be added to $Sleft(v,alpha right)$ to form an interval, and emph{the deficiency $defleft(G,alpharight)$ of a proper edge-coloring $alpha$ of $G$} is defined as the sum $sum_{vin V(G)}def(v,alpha)$. emph{The deficiency of a graph $G$}, denoted by $def(G)$, is defined as follows: $def(G)=min_{alpha}defleft(G,alpharight)$, where minimum is taken over all possible proper edge-colorings of $G$. For a graph $G$, the smallest and the largest values of $t$ for which it has a proper $t$-edge-coloring $alpha$ with deficiency $def(G,alpha)=def(G)$ are denoted by $w_{def}(G)$ and $W_{def}(G)$, respectively. In this paper, we obtain some bounds on $w_{def}(G)$ and $W_{def}(G)$. In particular, we show that for any $lin mathbb{N}$, there exists a graph $G$ such that $def(G)>0$ and $W_{def}(G)-w_{def}(G)geq l$. It is known that for the complete graph $K_{2n+1}$, $def(K_{2n+1})=n$ ($nin mathbb{N}$). Recently, Borowiecka-Olszewska, Drgas-Burchardt and Ha{l}uszczak posed the following conjecture on the deficiency of near-complete graphs: if $nin mathbb{N}$, then $def(K_{2n+1}-e)=n-1$. In this paper, we confirm this conjecture.
An edge-coloring of a graph $G$ with colors $1,ldots,t$ is an emph{interval $t$-coloring} if all colors are used, and the colors of edges incident to each vertex of $G$ are distinct and form an integer interval. It is well-known that there are graphs
Let $G$ be a nontrivial connected and vertex-colored graph. A subset $X$ of the vertex set of $G$ is called rainbow if any two vertices in $X$ have distinct colors. The graph $G$ is called emph{rainbow vertex-disconnected} if for any two vertices $x$
We provide precise asymptotic estimates for the number of several classes of labelled cubic planar graphs, and we analyze properties of such random graphs under the uniform distribution. This model was first analyzed by Bodirsky et al. (Random Struct
Motivated by analogous questions in the setting of Steiner triple systems and Latin squares, Nenadov, Sudakov and Wagner [Completion and deficiency problems, Journal of Combinatorial Theory Series B, 2020] recently introduced the notion of graph defi
A graph $G$ is $k$-vertex-critical if $G$ has chromatic number $k$ but every proper induced subgraph of $G$ has chromatic number less than $k$. The study of $k$-vertex-critical graphs for graph classes is an important topic in algorithmic graph theor