ﻻ يوجد ملخص باللغة العربية
The temperature dependence of exchange bias properties are studied in polycrystalline $ mathrm{BiFeO_3} / mathrm{Ni_{81}Fe_{19}} $ bilayers, for different $ mathrm{BiFeO_3} $ thicknesses. Using a field cooling protocol, a non-monotonic behavior of the exchange bias field is shown in the exchange-biased bilayers. Another thermal protocol, the Soeya protocol, related to the $ mathrm{BiFeO_3} $ thermal activation energies was carried out and reveals a two-step evolution of the exchange bias field. The results of these two different protocols are similar to the ones obtained for measurements previously reported on epitaxial $ mathrm{BiFeO_3} $, indicating a driving mechanism independent of the long-range crystalline arrangement (i.e., epitaxial or polycrystalline). An intrinsic property of $ mathrm{BiFeO_3} $ is proposed as being the driving mechanism for the thermal dependent magnetization reversal: the canting of the $ mathrm{BiFeO_3} $ spins leading to a biquadratic contribution to the exchange coupling. The temperature dependence of the magnetization reversal angular behavior agrees with the presence of such a biquadratic contribution for exchange biased bilayers studied here.
An experimental study of the in-plane azimuthal behaviour and frequency dependence of the ferromagnetic resonance field and the resonance linewidth as a function of BiFeO$_3$ thickness is carried out in a polycrystalline exchange-biased BiFeO$_3$/Ni$
We study spin pumping in a $mathrm{Y_3Fe_5O_{12}(YIG)/Pt/Ni_{81}Fe_{19}(Py)}$ trilayer film by means of the inverse spin Hall effect (ISHE). When the ferromagnets are not excited simultaneously by a microwave, ISHE-induced voltage is of the opposite
We have measured resonant soft x-ray diffuse magnetic scattering as a function of temperature in a positively exchange biased Co/FeF2 bilayer and analyzed the data in the distorted wave Born approximation to obtain in-plane charge and magnetic correl
Using ab initio calculations and special quasirandom structures, we have characterized the distribution of defect formation energy and migration barrier in Ni-based solid-solution alloys: Ni_{0.5}Co_{0.5}, Ni_{0.5}Fe_{0.5}, Ni_{0.8}Fe_{0.2} and Ni_{0
Magnetic skyrmions are topological spin textures holding great potential as nanoscale information carriers. Recently, skyrmions have been predicted in antiferromagnets, with key advantages in terms of stability, size and dynamical properties over the