ﻻ يوجد ملخص باللغة العربية
For a strict Lie 2-group, we develop a notion of Lie 2-algebra-valued differential forms on Lie groupoids, furnishing a differential graded-commutative Lie algebra equipped with an adjoint action of the Lie 2-group and a pullback operation along Morita equivalences between Lie groupoids. Using this notion, we define connections on principal 2-bundles as Lie 2-algebra-valued 1-forms on the total space Lie groupoid of the 2-bundle, satisfying a condition in complete analogy to connections on ordinary principal bundles. We carefully treat various notions of curvature, and prove a classification result by the non-abelian differential cohomology of Breen-Messing. This provides a consistent, global perspective to higher gauge theory.
A nice differential-geometric framework for (non-abelian) higher gauge theory is provided by principal 2-bundles, i.e. categorified principal bundles. Their total spaces are Lie groupoids, local trivializations are kinds of Morita equivalences, and c
The aim of this paper is to review and discuss in detail local aspects of principal bundles with groupoid structure. Many results, in particular from the second and third section, are already known to some extents, but, due to the lack of a ``unified
In this paper we introduce a notion of parallel transport for principal bundles with connections over differentiable stacks. We show that principal bundles with connections over stacks can be recovered from their parallel transport thereby extending
We construct and study general connections on Lie groupoids and differentiable stacks as well as on principal bundles over them using Atiyah sequences associated to transversal tangential distributions.
Motivated by the computations done in cite{C1}, where I introduced and discussed what I called the groupoid of generalized gauge transformations, viewed as a groupoid over the objects of the category $mathsf{Bun}_{G,M}$ of principal $G$-bundles over