ﻻ يوجد ملخص باللغة العربية
The formulation of Geometric Quantization contains several axioms and assumptions. We show that for real polarizations we can generalize the standard geometric quantization procedure by introducing an arbitrary connection on the polarization bundle. The existence of reducible quantum structures leads to considering the class of Liouville symplectic manifolds. Our main application of this modified geometric quantization scheme is to Quantum Mechanics on Riemannian manifolds. With this method we obtain an energy operator without the scalar curvature term that appears in the standard formulation, thus agreeing with the usual expression found in the Physics literature.
We revisit the computation of the phase of the Dirac fermion scattering operator in external gauge fields. The computation is through a parallel transport along the path of time evolution operators. The novelty of the present paper compared with the
In this paper we study the convex cone of not necessarily smooth measures satisfying the classical KMS condition within the context of Poisson geometry. We discuss the general properties of KMS measures and its relation with the underlying Poisson ge
Polymer Quantum Mechanics is based on some of the techniques used in the loop quantization of gravity that are adapted to describe systems possessing a finite number of degrees of freedom. It has been used in two ways: on one hand it has been used to
We characterize point transformations in quantum mechanics from the mathematical viewpoint. To conclude that the canonical variables given by each point transformation in quantum mechanics correctly describe the extended point transformation, we show
We give a mathematically rigorous derivation of Ehrenfests equations for the evolution of position and momentum expectation values, under general and natural assumptions which include atomic and molecular Hamiltonians with Coulomb interactions.