ﻻ يوجد ملخص باللغة العربية
We calculate the rate of double open charm production in the forward kinematics studied recently in the LHCb experiment. We find that the mean field approximation for the double parton GPD (Generalized parton distributions), which neglects parton - parton correlations, underestimates the rate by a factor of two. The enhancement due to the perturbative QCD correlation 12 mechanism which explains the rate of double parton interactions at the central rapidities is found to explain 60 $div$ 80 % of the discrepancy. We argue that the nonperturbative fluctuations leading to non-factorized (correlated) contributions to the initial conditions for the DGLAP collinear evolution of the double parton GPD play an important role in this kinematics. Combined, the two correlation mechanisms provide a good description of the rate of double charm production reported by the LHCb. We also give predictions for the variation of the effs (i.e. the ratio of double and square of single inclusive rates) in the discussed kinematics as a function of $p_t$. The account for two correlation mechanisms strongly reduces sensitivity of the results to the starting point of the QCD evolution.
We present predictions for the double parton scattering (DPS) four-jet production cross sections in $pA$ collisions at the LHC. Relying on the experimental capabilities to correlate centrality with impact parameter $B$ of the proton-nucleus collision
We study the $W^+W^-$ and $Z^0Z^0$ electroweak boson production in double parton scattering using QCD evolution equations for double parton distributions. In particular, we analyze the impact of splitting terms in the evolution equations on the doubl
We present results on Zjj production via double parton scattering in pA collisions at the LHC. We perform the analysis at leading and next-leading order accuracy with different sets of cuts on jet transverse momenta and accounting for the single part
In this paper we estimate the double parton scattering (DPS) contribution for the heavy quark production in $pA$ collisions at the LHC. The cross sections for the charm and bottom production are estimated using the dipole approach and taking into acc
We study $D$ - meson production at forward rapidities taking into account the non - linear effects in the QCD dynamics and the intrinsic charm component of the proton wave function. The total cross section, the rapidity distributions and the Feynman