ﻻ يوجد ملخص باللغة العربية
A formalism is presented for treating strongly-correlated graphene quantum Hall states in terms of an SO(8) fermion dynamical symmetry that includes pairing as well as particle--hole generators. The graphene SO(8) algebra is isomorphic to an SO(8) algebra that has found broad application in nuclear physics, albeit with physically very different generators, and exhibits a strong formal similarity to SU(4) symmetries that have been proposed to describe high-temperature superconductors. The well-known SU(4) symmetry of quantum Hall ferromagnetism for single-layer graphene is recovered as one subgroup of SO(8), but the dynamical symmetry structure associated with the full set of SO(8) subgroup chains extends quantum Hall ferromagnetism and allows analytical many-body solutions for a rich set of collective states exhibiting spontaneously-broken symmetry that may be important for the low-energy physics of graphene in strong magnetic fields. The SO(8) symmetry permits a natural definition of generalized coherent states that correspond to symmetry-constrained Hartree--Fock--Bogoliubov solutions, or equivalently a microscopically-derived Ginzburg--Landau formalism, exhibiting the interplay between competing spontaneously broken symmetries in determining the ground state.
Flat band moire superlattices have recently emerged as unique platforms for investigating the interplay between strong electronic correlations, nontrivial band topology, and multiple isospin flavor symmetries. Twisted monolayer-bilayer graphene (tMBG
Nonabelian anyons offer the prospect of storing quantum information in a topological qubit protected from decoherence, with the degree of protection determined by the energy gap separating the topological vacuum from its low lying excitations. Origin
Monolayer graphene placed with a twist on top of AB-stacked bilayer graphene hosts topological flat bands in a wide range of twist angles. The dispersion of these bands and gaps between them can be efficiently controlled by a perpendicular electric f
Strong spin-orbit coupling fosters exotic electronic states such as topological insulators and superconductors, but the combination of strong spin-orbit and strong electron-electron interactions is just beginning to be understood. Central to this eme
The experimentally observed correlated insulating states and quantum anomalous Hall (QAH) effect in twisted bilayer graphene (TBG) have drawn significant attention. However, up to date, the specific mechanisms of these intriguing phenomena are still