ﻻ يوجد ملخص باللغة العربية
This study concerns online inference (i.e., filtering) on the state of reaction networks, conditioned on noisy and partial measurements. The difficulty in deriving the equation that the conditional probability distribution of the state satisfies stems from the fact that the master equation, which governs the evolution of the reaction networks, is analytically intractable. The linear noise approximation (LNA) technique, which is widely used in the analysis of reaction networks, has recently been applied to develop approximate inference. Here, we apply the projection method to derive approximate filters, and compare them to a filter based on the LNA numerically in their filtering performance. We also contrast the projection method with moment-closure techniques in terms of approximating the evolution of stochastic reaction networks.
In the past few decades, the development of fluorescent technologies and microscopic techniques has greatly improved scientists ability to observe real-time single-cell activities. In this paper, we consider the filtering problem associate with these
We consider the problem of estimating the dynamic latent states of an intracellular multiscale stochastic reaction network from time-course measurements of fluorescent reporters. We first prove that accurate solutions to the filtering problem can be
The Chemical Master Equation (CME) is well known to provide the highest resolution models of a biochemical reaction network. Unfortunately, even simulating the CME can be a challenging task. For this reason more simple approximations to the CME have
The probability distribution describing the state of a Stochastic Reaction Network evolves according to the Chemical Master Equation (CME). It is common to estimated its solution using Monte Carlo methods such as the Stochastic Simulation Algorithm (
In this paper, we consider the problem of model order reduction of stochastic biochemical networks. In particular, we reduce the order of (the number of equations in) the Linear Noise Approximation of the Chemical Master Equation, which is often used