ترغب بنشر مسار تعليمي؟ اضغط هنا

An `Analytic Dynamical Magnetosphere formalism for X-ray and optical emission from slowly rotating magnetic massive stars

70   0   0.0 ( 0 )
 نشر من قبل Stan Owocki
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Slowly rotating magnetic massive stars develop dynamical magnetospheres (DMs), characterized by trapping of stellar wind outflow in closed magnetic loops, shock heating from collision of the upflow from opposite loop footpoints, and subsequent gravitational infall of radiatively cooled material. In 2D and 3D magnetohydrodynamic (MHD) simulations the interplay among these three components is spatially complex and temporally variable, making it difficult to derive observational signatures and discern their overall scaling trends.Within a simplified, steady-state analysis based on overall conservation principles, we present here an analytic dynamical magnetosphere (ADM) model that provides explicit formulae for density, temperature and flow speed in each of these three components -- wind outflow, hot post-shock gas, and cooled inflow -- as a function of colatitude and radius within the closed (presumed dipole) field lines of the magnetosphere. We compare these scalings with time-averaged results from MHD simulations, and provide initial examples of application of this ADM model for deriving two key observational diagnostics, namely hydrogen H-alpha emission line profiles from the cooled infall, and X-ray emission from the hot post-shock gas. We conclude with a discussion of key issues and advantages in applying this ADM formalism toward derivation of a broader set of observational diagnostics and scaling trends for massive stars with such dynamical magnetospheres.



قيم البحث

اقرأ أيضاً

141 - C. Erba , A. David-Uraz , V. Petit 2021
Recent large-scale spectropolarimetric surveys have established that a small but significant percentage of massive stars host stable, surface dipolar magnetic fields with strengths on the order of kG. These fields channel the dense, radiatively drive n stellar wind into circumstellar magnetospheres, whose density and velocity structure can be probed using ultraviolet (UV) spectroscopy of wind-sensitive resonance lines. Coupled with appropriate magnetosphere models, UV spectroscopy provides a valuable way to investigate the wind-field interaction, and can yield quantitative estimates of the wind parameters of magnetic massive stars. We report a systematic investigation of the formation of UV resonance lines in slowly rotating magnetic massive stars with dynamical magnetospheres. We pair the Analytic Dynamical Magnetosphere (ADM) formalism with a simplified radiative transfer technique to produce synthetic UV line profiles. Using a grid of models, we examine the effect of magnetosphere size, the line strength parameter, and the cooling parameter on the structure and modulation of the line profile. We find that magnetic massive stars uniquely exhibit redshifted absorption at most viewing angles and magnetosphere sizes, and that significant changes to the shape and variation of the line profile with varying line strengths can be explained by examining the individual wind components described in the ADM formalism. Finally, we show that the cooling parameter has a negligible effect on the line profiles.
277 - Yael Naze 2014
Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM observations, corresponding to all a vailable exposures of known massive magnetic stars (over 100 exposures covering ~60% of stars compiled in the catalog of Petit et al. 2013). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss-rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower-Mdot B stars and flattens for the more luminous, higher-Mdot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g. higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest some temperature stratification to exist in massive stars magnetospheres.
172 - G. Rauw , Y. Naze , N.J. Wright 2014
We report on the analysis of the Chandra-ACIS data of O, B and WR stars in the young association Cyg OB2. X-ray spectra of 49 O-stars, 54 B-stars and 3 WR-stars are analyzed and for the brighter sources, the epoch dependence of the X-ray fluxes is in vestigated. The O-stars in Cyg,OB2 follow a well-defined scaling relation between their X-ray and bolometric luminosities: log(Lx/Lbol) = -7.2 +/- 0.2. This relation is in excellent agreement with the one previously derived for the Carina OB1 association. Except for the brightest O-star binaries, there is no general X-ray overluminosity due to colliding winds in O-star binaries. Roughly half of the known B-stars in the surveyed field are detected, but they fail to display a clear relationship between Lx and Lbol. Out of the three WR stars in Cyg OB2, probably only WR144 is itself responsible for the observed level of X-ray emission, at a very low log(Lx/Lbol) = -8.8 +/- 0.2. The X-ray emission of the other two WR-stars (WR145 and 146) is most probably due to their O-type companion along with a moderate contribution from a wind-wind interaction zone.
104 - M. S. Munoz , G. A. Wade , Y. Naze 2019
In this paper, we investigate the photometric variability of magnetic O-type stars. Such stars possess oblique, predominantly dipolar magnetic fields that confine their winds roughly axisymmetrically about the magnetic equator, thus forming a magneto sphere. We interpret their photometric variability as phase-dependent magnetospheric occultations. For massive star winds dominated by electron scattering opacity in the optical and NIR, we can compute synthetic light curves from simply knowing the magnetospheres mass density distribution. We exploit the newly-developed Analytical Dynamical Magnetosphere model (ADM) in order to obtain the predicted circumstellar density structures of magnetic O-type stars. The simplicity in our light curve synthesis model allows us to readily conduct a parameter space study. For validation purposes, we first apply our algorithm to HD 191612, the prototypical Of?p star. Next, we attempt to model the photometric variability of the Of?p-type stars identified in the Magellanic Clouds using OGLE photometry. We evaluate the compatibility of the ADM predictions with the observed photometric variations, and discuss the magnetic field properties that are implied by our modelling.
We study the Vainshtein mechanism in the context of slowly rotating stars in scalar-tensor theories. While the Vainshtein screening is well established for spherically symmetric spacetimes, we examine its validity in the axisymmetric case for slowly rotating sources. We show that the deviations from the general relativity solution are small in the weak-field approximation outside the star: the solution for the frame-dragging function is the same as in general relativity at leading order. Moreover, in most cases the corrections are suppressed by powers of the Vainshtein radius provided that the screening operates in spherical symmetry. Outside the Vainshtein radius, the frame dragging function receives corrections that are not suppressed by the Vainshtein radius, but which are still subleading. This suggests that the Vainshtein mechanism in general can be extended to slowly rotating stars and that it works analogously to the static case inside the Vainshtein radius. We also study relativistic stars and show that for some theories the frame-dragging function in vacuum does not receive corrections at all, meaning that the screening is perfect outside the star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا