ﻻ يوجد ملخص باللغة العربية
We report the experimental evidence of the existence of a random attractor in a fully developed turbulent swirling flow. By defining a global observable which tracks the asymmetry in the flux of angular momentum imparted to the flow, we can first reconstruct the associated turbulent attractor and then follow its route towards chaos. We further show that the experimental attractor can be modeled by stochastic Duffing equations, that match the quantitative properties of the experimental flow, namely the number of quasi-stationary states and transition rates among them, the effective dimensions, and the continuity of the first Lyapunov exponents. Such properties can neither be recovered using deterministic models nor using stochastic differential equations based on effective potentials obtained by inverting the probability distributions of the experimental global observables. Our findings open the way to low dimensional modeling of systems featuring a large number of degrees of freedom and multiple quasi-stationary states.
A stochastic model is derived to predict the turbulent torque produced by a swirling flow. It is a simple Langevin process, with a colored noise. Using the unified colored noise approximation, we derive analytically the PDF of the fluctuations of inj
We study the melting dynamics of large ice balls in a turbulent von Karman flow at very high Reynolds number. Using an optical shadowgraphy setup, we record the time evolution of particle sizes. We study the heat transfer as a function of the particl
Using various techniques from dynamical systems theory, we rigorously study an experimentally validated model by [Barkley et al., Nature, 526:550-553, 2015], which describes the rise of turbulent pipe flow via a PDE system of reduced complexity. The
We present a comparison of different particles velocity and acceleration statistics in two paradigmatic turbulent swirling flows: the von Karman flow in a laboratory experiment, and the Taylor-Green flow in direct numerical simulations. Tracers, as w
By utilizing diffusion maps embedding and transition matrix analysis we investigate sparse temperature measurement time-series data from Rayleigh--Benard convection experiments in a cylindrical container of aspect ratio $Gamma=D/L=0.5$ between its di