ﻻ يوجد ملخص باللغة العربية
Gaussian conditional realizations are routinely used for risk assessment and planning in a variety of Earth sciences applications. Conditional realizations can be obtained by first creating unconditional realizations that are then post-conditioned by kriging. Many efficient algorithms are available for the first step, so the bottleneck resides in the second step. Instead of doing the conditional simulations with the desired covariance (F approach) or with a tapered covariance (T approach), we propose to use the taper covariance only in the conditioning step (Half-Taper or HT approach). This enables to speed up the computations and to reduce memory requirements for the conditioning step but also to keep the right short scale variations in the realizations. A criterion based on mean square error of the simulation is derived to help anticipate the similarity of HT to F. Moreover, an index is used to predict the sparsity of the kriging matrix for the conditioning step. Some guides for the choice of the taper function are discussed. The distributions of a series of 1D, 2D and 3D scalar response functions are compared for F, T and HT approaches. The distributions obtained indicate a much better similarity to F with HT than with T.
A hybrid estimator of the log-spectral density of a stationary time series is proposed. First, a multiple taper estimate is performed, followed by kernel smoothing the log-multiple taper estimate. This procedure reduces the expected mean square error
Gaussian processes are popular and flexible models for spatial, temporal, and functional data, but they are computationally infeasible for large datasets. We discuss Gaussian-process approximations that use basis functions at multiple resolutions to
This paper introduces a framework for speeding up Bayesian inference conducted in presence of large datasets. We design a Markov chain whose transition kernel uses an (unknown) fraction of (fixed size) of the available data that is randomly refreshed
We establish verifiable conditions under which Metropolis Hastings (MH) algorithms with position-dependent proposal covariance matrix will or will not have geometric rate of convergence. Some of the diffusions based MH algorithms like Metropolis adju
Light and Widely Applicable (LWA-) MCMC is a novel approximation of the Metropolis-Hastings kernel targeting a posterior distribution defined on a large number of observations. Inspired by Approximate Bayesian Computation, we design a Markov chain wh