ﻻ يوجد ملخص باللغة العربية
We provide a complete classification of the possible cofinal structures of the families of precompact (totally bounded) sets in general metric spaces, and compact sets in general complete metric spaces. Using this classification, we classify the cofinal structure of local bases in the groups $C(X,bbR)$ of continuous real-valued functions on complete metric spaces $X$, with respect to the compact-open topology.
We study products of general topological spaces with Mengers covering property, and its refinements based on filters and semifilters. To this end, we extend the projection method from the classic real line topology to the Michael topology. Among othe
An old problem asks whether every compact group has a Haar-nonmeasurable subgroup. A series of earlier results reduce the problem to infinite metrizable profinite groups. We provide a positive answer, assuming a weak, potentially provable, consequenc
In recent years much attention has been enjoyed by topological spaces which are dominated by second countable spaces. The origin of the concept dates back to the 1979 paper of Talagrand in which it was shown that for a compact space X, Cp(X) is domin
We initiate the study of ends of non-metrizable manifolds and introduce the notion of short and long ends. Using the theory developed, we provide a characterization of (non-metrizable) surfaces that can be written as the topological sum of a metrizab
We prove that the locally convex space $C_{p}(X)$ of continuous real-valued functions on a Tychonoff space $X$ equipped with the topology of pointwise convergence is distinguished if and only if $X$ is a $Delta$-space in the sense of cite {Knight}. A