ﻻ يوجد ملخص باللغة العربية
In molecular photodissociation, some specific combinations of laser parameters (wavelength and intensity) lead to unexpected Zero-Width Resonances (ZWR), with in principle infinite lifetimes. Their interest in inducing basic quenching mechanisms have recently been devised in the laser control of vibrational cooling through filtration strategies [O. Atabek et al., Phys. Rev. A87, 031403(R) (2013)]. A full quantum adiabatic control theory based on the adiabatic Floquet Hamiltonian is developed to show how a laser pulse could be envelop-shaped and frequency-chirped so as to protect a given initial vibrational state against dissociation, taking advantage from its continuous transport on the corresponding ZWR, all along the pulse duration. As compared with previous control scenarios actually suffering from non-adiabatic contamination, drastically different and much more efficient filtration goals are achieved. A semiclassical analysis helps in finding and interpreting a complete map of ZWRs in the laser parameter plane. In addition, the choice of a given ZWR path, among the complete series identified by the semiclassical approach, amounts to be crucial for the cooling scheme, targeting a single vibrational state population left at the end of the pulse, while all others have almost completely decayed. The illustrative example, offering the potentiality to be transposed to other diatomics, is Na2 prepared by photoassociation in vibrationally hot but translationally and rotationally cold states.
A semiclassical model supporting the destructive interference interpretation of zero-width resonances (ZWR) is extended to wavelengths inducing c_minus-type curve crossing situations in Na2 strong field dissociation. This opens the possibility to get
We study the approach to the adiabatic limit in periodically driven systems. Specifically focusing on a spin-1/2 in a magnetic field we find that, when the parameters of the Hamiltonian lead to a quasi-degeneracy in the Floquet spectrum, the evolutio
The use of periodic driving for synthesizing many-body quantum states depends crucially on the existence of a prethermal regime, which exhibits drive-tunable properties while forestalling the effects of heating. This motivates the search for direct e
H$_2^+$ is an ideal candidate for a detailed study of strong field coherent control strategies inspired by basic mechanisms referring to some specific photodissociation resonances. Two of them are considered in this work, namely: Zero-width resonance
We demonstrate Floquet engineering in a basic yet scalable 2D architecture of individually trapped and controlled ions. Local parametric modulations of detuned trapping potentials steer the strength of long-range inter-ion couplings and the related P