ﻻ يوجد ملخص باللغة العربية
When an electronic system is subjected to a sufficiently strong magnetic field that the cyclotron energy is much larger than the Fermi energy, the system enters the extreme quantum limit (EQL) and becomes susceptible to a number of instabilities. Bringing a three-dimensional electronic system deeply into the EQL can be difficult, however, since it requires a small Fermi energy, large magnetic field, and low disorder. Here we present an experimental study of the EQL in lightly-doped single crystals of strontium titanate, which remain good bulk conductors down to very low temperatures and high magnetic fields. Our experiments probe deeply into the regime where theory has long predicted electron-electron interactions to drive the system into a charge density wave or Wigner crystal state. A number of interesting features arise in the transport in this regime, including a striking re-entrant nonlinearity in the current-voltage characteristics and a saturation of the quantum-limiting field at low carrier density. We discuss these features in the context of possible correlated electron states, and present an alternative picture based on magnetic-field induced puddling of electrons.
Room temperature ferromagnetism was characterized for thin films of SrTi$_{0.6}$Fe$_{0.4}$O$_{3-{delta}}$ grown by pulsed laser deposition on SrTiO$_{3}$ and Si substrates under different oxygen pressures and after annealing under oxygen and vacuum c
Cooling oxygen-deficient strontium titanate to liquid-helium temperature leads to a decrease in its electrical resistivity by several orders of magnitude. The temperature dependence of resistivity follows a rough T$^{3}$ behavior before becoming T$^{
We study the quantum criticality of the phase transition between the Dirac semimetal and the excitonic insulator in two dimensions. Even though the system has a semimetallic ground state, there are observable effects of excitonic pairing at finite te
The study of randomness in low-dimensional quantum antiferromagnets is at the forefront of research in the field of strongly correlated electron systems, yet there have been relatively few experimental model systems. Complementary neutron scattering
Monodispersed strontium titanate nanoparticles were prepared and studied in detail. It is found that ~10 nm as-prepared stoichiometric nanoparticles are in a polar structural state (with possibly ferroelectric properties) over a broad temperature ran