ﻻ يوجد ملخص باللغة العربية
In this paper, we study PUSH-PULL style rumor spreading algorithms in the mobile telephone model, a variant of the classical telephone model in which each node can participate in at most one connection per round; i.e., you can no longer have multiple nodes pull information from the same source in a single round. Our model also includes two new parameterized generalizations: (1) the network topology can undergo a bounded rate of change (for a parameterized rate that spans from no changes to changes in every round); and (2) in each round, each node can advertise a bounded amount of information to all of its neighbors before connection decisions are made (for a parameterized number of bits that spans from no advertisement to large advertisements). We prove that in the mobile telephone model with no advertisements and no topology changes, PUSH-PULL style algorithms perform poorly with respect to a graphs vertex expansion and graph conductance as compared to the known tight results in the classical telephone model. We then prove, however, that if nodes are allowed to advertise a single bit in each round, a natural variation of PUSH-PULL terminates in time that matches (within logarithmic factors) this strategys performance in the classical telephone model---even in the presence of frequent topology changes. We also analyze how the performance of this algorithm degrades as the rate of change increases toward the maximum possible amount. We argue that our model matches well the properties of emerging peer-to-peer communication standards for mobile devices, and that our efficient PUSH-PULL variation that leverages small advertisements and adapts well to topology changes is a good choice for rumor spreading in this increasingly important setting.
We study the problem of randomized information dissemination in networks. We compare the now standard PUSH-PULL protocol, with agent-based alternatives where information is disseminated by a collection of agents performing independent random walks. I
We study the design of schedules for multi-commodity multicast; we are given an undirected graph $G$ and a collection of source destination pairs, and the goal is to schedule a minimum-length sequence of matchings that connects every source with its
Motivated by storage applications, we study the following data structure problem: An encoder wishes to store a collection of jointly-distributed files $overline{X}:=(X_1,X_2,ldots, X_n) sim mu$ which are emph{correlated} ($H_mu(overline{X}) ll sum_i
Social network is a main tunnel of rumor spreading. Previous studies are concentrated on a static rumor spreading. The content of the rumor is invariable during the whole spreading process. Indeed, the rumor evolves constantly in its spreading proces
We introduce the {Destructive Object Handling} (DOH) problem, which models aspects of many real-world allocation problems, such as shipping explosive munitions, scheduling processes in a cluster with fragile nodes, re-using passwords across multiple