ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure effects on crystal and electronic structure of bismuth tellurohalides

212   0   0.0 ( 0 )
 نشر من قبل Igor Rusinov
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the possibility of pressure-induced transitions from a normal semiconductor to a topological insulator (TI) in bismuth tellurohalides using density functional theory and tight-binding method. In BiTeI this transition is realized through the formation of an intermediate phase, a Weyl semimetal, that leads to modification of surface state dispersions. In the topologically trivial phase, the surface states exhibit a Bychkov-Rashba type dispersion. The Weyl semimetal phase exists in a narrow pressure interval of 0.2 GPa. After the Weyl semimetal--TI transition occurs, the surface electronic structure is characterized by gapless states with linear dispersion. The peculiarities of the surface states modification under pressure depend on the band-bending effect. We have also calculated the frequencies of Raman active modes for BiTeI in the proposed high-pressure crystal phases in order to compare them with available experimental data. Unlike BiTeI, in BiTeBr and BiTeCl the topological phase transition does not occur. In BiTeBr, the crystal structure changes with pressure but the phase remains a trivial one. However, the transition appears to be possible if the low-pressure crystal structure is retained. In BiTeCl under pressure, the topological phase does not appear up to 18 GPa due to a relatively large band gap width in this compound.



قيم البحث

اقرأ أيضاً

The high pressure structural properties of bismuth oxide Bi2SiO5 have been investigated up to 28 GPa using in situ powder synchrotron X-ray diffraction and up to 50 GPa with DFT calculations. The monoclinic structure is found to persist up to about 2 0 GPa, where a notable change in the compressibility occurs. The DFT data imply that this is due to a second-order phase transition from the ambient condition monoclinic structure with space group Cc to an orthorhombic polymorph with space group Cmcm. This transition involves the straightening of the chains formed by corner-connected SiO4 tetrahedra, that suppresses the ferroelectricity in the high pressure, centrosymmetric phase of Bi2SiO5. The stereo-chemical activity of the Bi3+ lone electron pair is found to decrease with increasing pressure, but it can still be identifed in the calculated electron density difference maps at 50 GPa.
Single crystalline bismuth (Bi) is known to have a peculiar electronic structure which is very close to the topological phase transition. The modification of the surface states of Bi depending on the temperature are revealed by angle-resolved photoel ectron spectroscopy (ARPES). At low temperature, the upper branch of the surface state merged to the projected bulk conduction bands around the $bar{M}$ point of the surface Brillouin zone (SBZ). In contrast, the same branch merged to the projected bulk valence bands at high temperature (400 K). Such behavior could be interpreted as a topological phase transition driven by the temperature, which might be applicable for future spin-thermoelectric devices. We discuss the possible mechanisms to cause such transition, such as the thermal lattice distortion and electron-phonon coupling.
The effects of high pressure on the crystal structure of orthorhombic (Pnma) perovskite type cerium scandate have been studied in situ under high pressure by means of synchrotron x-ray powder diffraction, using a diamond anvil cell. We have found tha t the perovskite type crystal structure remains stable up to 40 GPa, the highest pressure reached in the experiments. The evolution of unit-cell parameters with pressure has indicated an anisotropic compression. The room-temperature pressure-volume equation of state is obtained from the experiments. From the evolution of microscopic structural parameters like bond distances and coordination polyhedra of cerium and scandium, the macroscopic behavior of CeScO3 under compression has been explained and reasoned for its large pressure stability. The reported results are discussed in comparison with high-pressure results from other perovskites.
We have investigated the crystal structure of LaOBiPbS3 using neutron diffraction and synchrotron X-ray diffraction. From structural refinements, we found that the two metal sites, occupied by Bi and Pb, were differently surrounded by the sulfur atom s. Calculated bond valence sum suggested that one metal site was nearly trivalent and the other was nearly divalent. Neutron diffraction also revealed site selectivity of Bi and Pb in the LaOBiPbS3 structure. These results suggested that the crystal structure of LaOBiPbS3 can be regarded as alternate stacks of the rock-salt-type Pb-rich sulfide layers and the LaOBiS2-type Bi-rich layers. From band calculations for an ideal (LaOBiS2)(PbS) system, we found that the S bands of the PbS layer were hybridized with the Bi bands of the BiS plane at around the Fermi energy, which resulted in the electronic characteristics different from that of LaOBiS2. Stacking the rock-salt type sulfide (chalcogenide) layers and the BiS2-based layered structure could be a new strategy to exploration of new BiS2-based layered compounds, exotic two-dimensional electronic states, or novel functionality.
The electronic and local structural properties of CuO under pressure have been investigated by means of X-ray absorption spectroscopy (XAS) at Cu K edge and ab-initio calculations, up to 17 GPa. The crystal structure of CuO consists of Cu motifs with in CuO$_4$ square planar units and two elongated apical Cu-O bonds. The CuO$_4$ square planar units are stable in the studied pressure range, with Cu-O distances that are approximately constant up to 5 GPa, and then decrease slightly up to 17 GPa. In contrast, the elongated Cu-O apical distances decrease continuously with pressure in the studied range. An anomalous increase of the mean square relative displacement (EXAFS Debye Waller, sigma$^2$) of the elongated Cu-O path is observed from 5 GPa up to 13 GPa, when a drastic reduction takes place in sigma$^2$. This is interpreted in terms of local dynamic disorder along the apical Cu-O path. At higher pressures (P>13 GPa), the local structure of Cu$^{2+}$ changes from a 4-fold square planar to a 4+2 Jahn-Teller distorted octahedral ion. We interpret these results in terms of the tendency of the Cu$^{2+}$ ion to form favorable interactions with the apical O atoms. Also, the decrease in Cu-O apical distance caused by compression softens the normal mode associated with the out-of-plane Cu movement. CuO is predicted to have an anomalous rise in permittivity with pressure as well as modest piezoelectricity in the 5-13 GPa pressure range. In addition, the near edge features in our XAS experiment show a discontinuity and a change of tendency at 5 GPa. For P < 5 GPa the evolution of the edge shoulder is ascribed to purely electronic effects which also affect the charge transfer integral. This is linked to a charge migration from the Cu to O, but also to an increase of the energy band gap, which show a change of tendency occurring also at 5 GPa.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا