ﻻ يوجد ملخص باللغة العربية
We study the possibility of pressure-induced transitions from a normal semiconductor to a topological insulator (TI) in bismuth tellurohalides using density functional theory and tight-binding method. In BiTeI this transition is realized through the formation of an intermediate phase, a Weyl semimetal, that leads to modification of surface state dispersions. In the topologically trivial phase, the surface states exhibit a Bychkov-Rashba type dispersion. The Weyl semimetal phase exists in a narrow pressure interval of 0.2 GPa. After the Weyl semimetal--TI transition occurs, the surface electronic structure is characterized by gapless states with linear dispersion. The peculiarities of the surface states modification under pressure depend on the band-bending effect. We have also calculated the frequencies of Raman active modes for BiTeI in the proposed high-pressure crystal phases in order to compare them with available experimental data. Unlike BiTeI, in BiTeBr and BiTeCl the topological phase transition does not occur. In BiTeBr, the crystal structure changes with pressure but the phase remains a trivial one. However, the transition appears to be possible if the low-pressure crystal structure is retained. In BiTeCl under pressure, the topological phase does not appear up to 18 GPa due to a relatively large band gap width in this compound.
The high pressure structural properties of bismuth oxide Bi2SiO5 have been investigated up to 28 GPa using in situ powder synchrotron X-ray diffraction and up to 50 GPa with DFT calculations. The monoclinic structure is found to persist up to about 2
Single crystalline bismuth (Bi) is known to have a peculiar electronic structure which is very close to the topological phase transition. The modification of the surface states of Bi depending on the temperature are revealed by angle-resolved photoel
The effects of high pressure on the crystal structure of orthorhombic (Pnma) perovskite type cerium scandate have been studied in situ under high pressure by means of synchrotron x-ray powder diffraction, using a diamond anvil cell. We have found tha
We have investigated the crystal structure of LaOBiPbS3 using neutron diffraction and synchrotron X-ray diffraction. From structural refinements, we found that the two metal sites, occupied by Bi and Pb, were differently surrounded by the sulfur atom
The electronic and local structural properties of CuO under pressure have been investigated by means of X-ray absorption spectroscopy (XAS) at Cu K edge and ab-initio calculations, up to 17 GPa. The crystal structure of CuO consists of Cu motifs with