ترغب بنشر مسار تعليمي؟ اضغط هنا

A Multi-task Deep Network for Person Re-identification

223   0   0.0 ( 0 )
 نشر من قبل Weihua Chen
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Person re-identification (ReID) focuses on identifying people across different scenes in video surveillance, which is usually formulated as a binary classification task or a ranking task in current person ReID approaches. In this paper, we take both tasks into account and propose a multi-task deep network (MTDnet) that makes use of their own advantages and jointly optimize the two tasks simultaneously for person ReID. To the best of our knowledge, we are the first to integrate both tasks in one network to solve the person ReID. We show that our proposed architecture significantly boosts the performance. Furthermore, deep architecture in general requires a sufficient dataset for training, which is usually not met in person ReID. To cope with this situation, we further extend the MTDnet and propose a cross-domain architecture that is capable of using an auxiliary set to assist training on small target sets. In the experiments, our approach outperforms most of existing person ReID algorithms on representative datasets including CUHK03, CUHK01, VIPeR, iLIDS and PRID2011, which clearly demonstrates the effectiveness of the proposed approach.



قيم البحث

اقرأ أيضاً

In this work, we present a Multi-Channel deep convolutional Pyramid Person Matching Network (MC-PPMN) based on the combination of the semantic-components and the color-texture distributions to address the problem of person re-identification. In parti cular, we learn separate deep representations for semantic-components and color-texture distributions from two person images and then employ pyramid person matching network (PPMN) to obtain correspondence representations. These correspondence representations are fused to perform the re-identification task. Further, the proposed framework is optimized via a unified end-to-end deep learning scheme. Extensive experiments on several benchmark datasets demonstrate the effectiveness of our approach against the state-of-the-art literature, especially on the rank-1 recognition rate.
Traditional person re-identification (ReID) methods typically represent person images as real-valued features, which makes ReID inefficient when the gallery set is extremely large. Recently, some hashing methods have been proposed to make ReID more e fficient. However, these hashing methods will deteriorate the accuracy in general, and the efficiency of them is still not high enough. In this paper, we propose a novel hashing method, called deep multi-index hashing (DMIH), to improve both efficiency and accuracy for ReID. DMIH seamlessly integrates multi-index hashing and multi-branch based networks into the same framework. Furthermore, a novel block-wise multi-index hashing table construction approach and a search-aware multi-index (SAMI) loss are proposed in DMIH to improve the search efficiency. Experiments on three widely used datasets show that DMIH can outperform other state-of-the-art baselines, including both hashing methods and real-valued methods, in terms of both efficiency and accuracy.
Person Re-identification (re-id) aims to match people across non-overlapping camera views in a public space. It is a challenging problem because many people captured in surveillance videos wear similar clothes. Consequently, the differences in their appearance are often subtle and only detectable at the right location and scales. Existing re-id models, particularly the recently proposed deep learning based ones match people at a single scale. In contrast, in this paper, a novel multi-scale deep learning model is proposed. Our model is able to learn deep discriminative feature representations at different scales and automatically determine the most suitable scales for matching. The importance of different spatial locations for extracting discriminative features is also learned explicitly. Experiments are carried out to demonstrate that the proposed model outperforms the state-of-the art on a number of benchmarks
Person re-identification (ReID) is an important task in wide area video surveillance which focuses on identifying people across different cameras. Recently, deep learning networks with a triplet loss become a common framework for person ReID. However , the triplet loss pays main attentions on obtaining correct orders on the training set. It still suffers from a weaker generalization capability from the training set to the testing set, thus resulting in inferior performance. In this paper, we design a quadruplet loss, which can lead to the model output with a larger inter-class variation and a smaller intra-class variation compared to the triplet loss. As a result, our model has a better generalization ability and can achieve a higher performance on the testing set. In particular, a quadruplet deep network using a margin-based online hard negative mining is proposed based on the quadruplet loss for the person ReID. In extensive experiments, the proposed network outperforms most of the state-of-the-art algorithms on representative datasets which clearly demonstrates the effectiveness of our proposed method.
In this work, we present a deep convolutional pyramid person matching network (PPMN) with specially designed Pyramid Matching Module to address the problem of person re-identification. The architecture takes a pair of RGB images as input, and outputs a similiarity value indicating whether the two input images represent the same person or not. Based on deep convolutional neural networks, our approach first learns the discriminative semantic representation with the semantic-component-aware features for persons and then employs the Pyramid Matching Module to match the common semantic-components of persons, which is robust to the variation of spatial scales and misalignment of locations posed by viewpoint changes. The above two processes are jointly optimized via a unified end-to-end deep learning scheme. Extensive experiments on several benchmark datasets demonstrate the effectiveness of our approach against the state-of-the-art approaches, especially on the rank-1 recognition rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا