ﻻ يوجد ملخص باللغة العربية
This paper describes a study of the self-sustaining process in wall-turbulence based on a second order statistical state dynamics (SSD) model of Couette flow. SSD models with this form are referred to as S3T models and self-sustain turbulence with a mean flow and second order perturbation structure similar to that obtained by DNS. The use of a SSD model to study the physical mechanisms underlying turbulence has advantages over the traditional approach of studying the dynamics of individual realizations of turbulence. One advantage is that the analytical structure of SSD isolates and directly expresses the interaction between the coherent mean flow and the incoherent perturbation components of the turbulence. Isolation of the interaction between these components reveals how this interaction underlies both the maintenance of the turbulence variance by transfer of energy from the externally driven flow to the perturbation components as well as the enforcement of the observed statistical mean turbulent state by feedback regulation between the mean and perturbation fields. Another advantage of studying turbulence using SSD models is that the analytical structure of S3T turbulence can be completely characterized. For example, turbulence in the S3T system is maintained by a parametric growth mechanism. Furthermore, the equilibrium statistical state of the turbulence can be demonstrated to be enforced by feedback regulation in which transient growth of the incoherent perturbations episodically suppresses coherent streak growth preventing runaway parametric growth of the incoherent turbulent component. Using S3T to isolate these parametric growth and feedback regulation mechanisms allows a detailed characterization of the dynamics of the self-sustaining process in S3T turbulence with compelling implications for understanding the mechanism of wall-turbulence.
While linear non-normality underlies the mechanism of energy transfer from the externally driven flow to the perturbation field that sustains turbulence, nonlinearity is also known to play an essential role. The goal of this study is to better unders
Despite the nonlinear nature of turbulence, there is evidence that part of the energy-transfer mechanisms sustaining wall turbulence can be ascribed to linear processes. The different scenarios stem from linear stability theory and comprise exponenti
Recent studies have brought into question the view that at sufficiently high Reynolds number turbulence is an asymptotic state. We present the first direct observation of the decay of turbulent states in Taylor-Couette flow with lifetimes spanning fi
This paper reviews results from the study of wall-bounded turbulent flows using statistical state dynamics (SSD) that demonstrate the benefits of adopting this perspective for understanding turbulence in wall-bounded shear flows. The SSD approach use
Turbulence in wall-bounded shear flow results from a synergistic interaction between linear non-normality and nonlinearity in which non-normal growth of a subset of perturbations configured to transfer energy from the externally forced component of t