Although the roll/streak structure is ubiquitous in pre-transitional wall-bounded shear flow, this structure is linearly stable if the idealization of laminar flow is made. Lacking an instability, the large transient growth of the roll/streak structure has been invoked to explain its appearance as resulting from chance occurrence in the free-stream turbulence (FST) of perturbations configured to optimally excite it. However, there is an alternative interpretation which is that FST interacts with the roll/streak structure to destabilize it. Statistical state dynamics (SSD) provides analysis methods for studying instabilities of this type which arise from interaction between the coherent and incoherent components of turbulence. Stochastic structural stability theory (S3T), which implements SSD in the form of a closure at second order, is used to analyze the SSD modes arising from interaction between the coherent streamwise invariant component and the incoherent FST component of turbulence. The least stable S3T mode is destabilized at a critical value of a parameter controlling FST intensity and a finite amplitude roll/streak structure arises from this instability through a bifurcation in this parameter. Although this bifurcation has analytical expression only in SSD, it is closely reflected in both the dynamically similar quasi-linear system, referred to as the restricted non-linear (RNL) system, and in DNS. S3T also predicts a second bifurcation at a higher value of the turbulent excitation parameter. This second bifurcation is shown to lead to transition to turbulence. Bifurcation from a finite amplitude roll/streak equilibrium provides a direct route to the turbulent state through the S3T roll/streak instability.