Deterministic strong-field quantum control


الملخص بالإنكليزية

Strong-field quantum-state control is investigated, taking advantage of the full---amplitude and phase---characterization of the interaction between matter and intense ultrashort pulses via transient-absorption spectroscopy. A sequence of intense delayed pulses is used, whose parameters are tailored to steer the system into a desired quantum state. We show how to experimentally enable this optimization by retrieving all quantum features of the light-matter interaction from observable spectra. This provides a full characterization of the action of strong fields on the atomic system, including the dependence upon possibly unknown pulse properties and atomic structures. Precision and robustness of the scheme are tested, in the presence of surrounding atomic levels influencing the systems dynamics.

تحميل البحث