ﻻ يوجد ملخص باللغة العربية
We study the charge and spin density distributions of excitonic insulator (EI) states in the tight-binding approximation. We first discuss the charge and spin densities of the EI states when the valence and conduction bands are composed of orthogonal orbitals in a single atom. We show that the anisotropic charge or spin density distribution occurs in a unit cell (or atom) and a higher rank electric or magnetic multipole moment becomes finite, indicating that the EI state corresponds to the multipole order. A full description of the multipole moments for the $s$, $p$, and $d$ orbitals is then given in general. We find that, in contrast to the conventional density-wave states, the modulation of the total charge or net magnetization does not appear in this case. However, when the conduction and valence bands include the component of the same orbital, the modulation of the total charge or net magnetization appears, as in the conventional density-wave state. We also discuss the electron density distribution in the EI state when the valence and conduction bands are composed of orbitals located in different atoms. We show that the excitonic ordering in this case corresponds to the bond order formation. Based on the results thus obtained we discuss the EI states of real materials recently reported.
We submit that the magnetic space-group Cac (#9.41) is consistent with the established magnetic structure of BaFe2Se3, with magnetic dipole moments in a motif that uses two ladders [Caron J M et al 2011 Phys. Rev. B 84 180409(R)]. The corresponding c
(TMTTF)2AsF6 undergoes two phase transitions upon cooling from 300 K. At Tco=103 K a charge-ordering (CO) occurs, and at Tsp(B=9 T)=11 K the material undergoes a spin-Peierls (SP) transition. Within the intermediate, CO phase, the charge disproportio
Bardasis-Schrieffer modes in superconductors are fluctuations in subdominant pairing channels, e.g., d-wave fluctuations in an s-wave superconductor. This Rapid Communication shows that these modes also generically occur in excitonic insulators. In s
We study third-harmonic generation (THG) in an excitonic insulator (EI) described in a two-band correlated electron model. Employing the perturbative expansion with respect to the external electric field, we derive the THG susceptibility taking into
We show that in excitonic insulators with $s$-wave electron-hole pairing, an applied electric field (either pulsed or static) can induce a $p$-wave component to the order parameter, and further drive it to rotate in the $s+ip$ plane, realizing a Thou