ﻻ يوجد ملخص باللغة العربية
We present a new multi-pixel high resolution (R >10^7) spectrometer for the Stratospheric Observatory for Far-Infrared Astronomy (SOFIA). The receiver uses 2 x 7-pixel subarrays in orthogonal polarization, each in an hexagonal array around a central pixel. We present the first results for this new instrument after commissioning campaigns in May and December 2015 and after science observations performed in May 2016 . The receiver is designed to ultimately cover the full 1.8-2.5 THz frequency range but in its first implementation, the observing range was limited to observations of the [CII] line at 1.9 THz in 2015 and extended to 1.83-2.07 THz in 2016. The instrument sensitivities are state-of-the-art and the first scientific observations performed shortly after the commissioning confirm that the time efficiency for large scale imaging is improved by more than an order of magnitude as compared to single pixel receivers. An example of large scale mapping around the Horsehead Nebula is presented here illustrating this improvement. The array has been added to SOFIAs instrument suite already for ongoing observing cycle 4.
We present the performance of the upGREAT heterodyne array receivers on the SOFIA telescope after several years of operations. This instrument is a multi-pixel high resolution (R > 10^7) spectrometer for the Stratospheric Observatory for Far-Infrared
An updated Science Vision for the SOFIA project is presented, including an overview of the characteristics and capabilities of the observatory and first generation instruments. A primary focus is placed on four science themes: The Formation of Stars
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is an airborne observatory consisting of a specially modified Boeing 747SP with a 2.7-m telescope, flying at altitudes as high as 13.7 km (45,000 ft). Designed to observe at wavelengths fro
ERIS is a diffraction limited thermal infrared imager and spectrograph for the Very Large Telescope UT4. One of the science cases for ERIS is the detection and characterization of circumstellar structures and exoplanets around bright stars that are t
I present and summarize a software package (LPipe) for completely automated, end-to-end reduction of both bright and faint sources with the Low-Resolution Imaging Spectrometer (LRIS) at Keck Observatory. It supports all gratings, grisms, and dichroic