ﻻ يوجد ملخص باللغة العربية
The aim of this paper is to prove the existence of almost global weak solutions for the unsteady nonlinear elastodynamics system in dimension $d=2$ or $3$, for a range of strain energy density functions satisfying some given assumptions. These assumptions are satisfied by the main strain energies generally considered. The domain is assumed to be bounded, and mixed boundary conditions are considered. Our approach is based on a nonlinear parabolic regularization technique, involving the $p$-Laplace operator. First we prove the existence of a local-in-time solution for the regularized system, by a fixed point technique. Next, using an energy estimate, we show that if the data are small enough, bounded by $varepsilon >0$, then the maximal time of existence does not depend on the parabolic regularization parameter, and the behavior of the lifespan $T$ is $gtrsim log (1/varepsilon)$, defining what we call here {it almost global existence}. The solution is thus obtained by passing this parameter to zero. The key point of our proof is due to recent nonlinear Korns inequalities proven by Ciarlet & Mardare in $mathrm{W}^{1,p}$ spaces, for $p>2$.
In this paper, we study the problem of global existence of weak solutions for the quasi-stationary compressible Stokes equations with an anisotropic viscous tensor. The key element of our proof is the control of a particular defect measure associated
In this paper we prove the almost sure existence of global weak solution to the 3D incompressible Navier-Stokes Equation for a set of large data in $dot{H}^{-alpha}(mathbb{R}^{3})$ or $dot{H}^{-alpha}(mathbb{T}^{3})$ with $0<alphaleq 1/2$. This is ac
This paper deals with the existence of positive solutions for the nonlinear system q(t)phi(p(t)u_{i}(t)))+f^{i}(t,textbf{u})=0,quad 0<t<1,quad i=1,2,...,n. This system often arises in the study of positive radial solutions of nonlinear elliptic syste
This paper concerns a time-independent thermoelectric model with two different boundary conditions. The model is a nonlinear coupled system of the Maxwell equations and an elliptic equation. By analyzing carefully the nonlinear structure of the equat
We study the well-posedness of a coupled Cahn-Hilliard-Stokes-Darcy system which is a diffuse-interface model for essentially immiscible two phase incompressible flows with matched density in a karstic geometry. Existence of finite energy weak soluti