ﻻ يوجد ملخص باللغة العربية
We extend classic characterisations of posterior distributions under Dirichlet process and gamma random measures priors to a dynamic framework. We consider the problem of learning, from indirect observations, two families of time-dependent processes of interest in Bayesian nonparametrics: the first is a dependent Dirichlet process driven by a Fleming-Viot model, and the data are random samples from the process state at discrete times; the second is a collection of dependent gamma random measures driven by a Dawson-Watanabe model, and the data are collected according to a Poisson point process with intensity given by the process state at discrete times. Both driving processes are diffusions taking values in the space of discrete measures whose support varies with time, and are stationary and reversible with respect to Dirichlet and gamma priors respectively. A common methodology is developed to obtain in closed form the time-marginal posteriors given past and present data. These are shown to belong to classes of finite mixtures of Dirichlet processes and gamma random measures for the two models respectively, yielding conjugacy of these classes to the type of data we consider. We provide explicit results on the parameters of the mixture components and on the mixing weights, which are time-varying and drive the mixtures towards the respective priors in absence of further data. Explicit algorithms are provided to recursively compute the parameters of the mixtures. Our results are based on the projective properties of the signals and on certain duality properties of their projections.
Nonparametric latent structure models provide flexible inference on distinct, yet related, groups of observations. Each component of a vector of $d ge 2$ random measures models the distribution of a group of exchangeable observations, while their dep
Pencils of Hankel matrices whose elements have a joint Gaussian distribution with nonzero mean and not identical covariance are considered. An approximation to the distribution of the squared modulus of their determinant is computed which allows to g
We obtain the optimal proxy variance for the sub-Gaussianity of Beta distribution, thus proving upper bounds recently conjectured by Elder (2016). We provide different proof techniques for the symmetrical (around its mean) case and the non-symmetrica
We study the randomness properties of reals with respect to arbitrary probability measures on Cantor space. We show that every non-computable real is non-trivially random with respect to some measure. The probability measures constructed in the proof
We develop a new Gibbs sampler for a linear mixed model with a Dirichlet process random effect term, which is easily extended to a generalized linear mixed model with a probit link function. Our Gibbs sampler exploits the properties of the multinomia