ﻻ يوجد ملخص باللغة العربية
In this paper, we present Lyapunov-based adaptive controllers for the practical (or real) stabilization of a perturbed chain of integrators with bounded uncertainties. We refer to such controllers as Adaptive Higher Order Sliding Mode (AHOSM) controllers since they are designed for nonlinear SISO systems with bounded uncertainties such that the uncertainty bounds are unknown. Our main result states that, given any neighborhood N of the origin, we determine a controller insuring, for every uncertainty bounds, that every trajectory of the corresponding closed loop system enters N and eventually remains there. The effectiveness of these controllers is illustrated through simulations.
In this paper, we present a Lyapunov-based homogeneous controller for the stabilization of a perturbed chain of integrators of arbitrary order $rgeq 1$. The proposed controller is based on homogeneous controller for stabilization of pure integrator c
Consider the $n$-th integrator $dot x=J_nx+sigma(u)e_n$, where $xinmathbb{R}^n$, $uin mathbb{R}$, $J_n$ is the $n$-th Jordan block and $e_n=(0 cdots 0 1)^Tinmathbb{R}^n$. We provide easily implementable state feedback laws $u=k(x)$ which not only ren
In this paper, we present a generalization of the super-twisting algorithm for perturbed chains of integrators of arbitrary order. This Higher Order Super-Twisting (HOST) controller, which extends the approach of Moreno and als., is homegeneous with
This paper studies an infinite horizon optimal control problem for discrete-time linear systems and quadratic criteria, both with random parameters which are independent and identically distributed with respect to time. A classical approach is to sol
In this paper, we study a retailer price optimization problem which includes the practical constraints: maximum number of price changes and minimum amount of price change (if a change is recommended). We provide a closed-form formula for the Euclidea