ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards Limited Scale-free Topology with Dynamic Peer Participation

107   0   0.0 ( 0 )
 نشر من قبل Boleslaw Szymanski
 تاريخ النشر 2016
والبحث باللغة English




اسأل ChatGPT حول البحث

Growth models have been proposed for constructing the scale-free overlay topology to improve the performance of unstructured peer-to-peer (P2P) networks. However, previous growth models are able to maintain the limited scale-free topology when nodes only join but do not leave the network; the case of nodes leaving the network while preserving a precise scaling parameter is not included in the solution. Thus, the full dynamic of node participation, inherent in P2P networks, is not considered in these models. In order to handle both nodes joining and leaving the network, we propose a robust growth model E-SRA, which is capable of producing the perfect limited scale-free overlay topology with user-defined scaling parameter and hard cut-offs. Scalability of our approach is ensured since no global information is required to add or remove a node. E-SRA is also tolerant to individual node failure caused by errors or attacks. Simulations have shown that E-SRA outperforms other growth models by producing topologies with high adherence to the desired scale-free property. Search algorithms, including flooding and normalized flooding, achieve higher efficiency over the topologies produced by E-SRA.



قيم البحث

اقرأ أيضاً

We bring rigor to the vibrant activity of detecting power laws in empirical degree distributions in real-world networks. We first provide a rigorous definition of power-law distributions, equivalent to the definition of regularly varying distribution s that are widely used in statistics and other fields. This definition allows the distribution to deviate from a pure power law arbitrarily but without affecting the power-law tail exponent. We then identify three estimators of these exponents that are proven to be statistically consistent -- that is, converging to the true value of the exponent for any regularly varying distribution -- and that satisfy some additional niceness requirements. In contrast to estimators that are currently popular in network science, the estimators considered here are based on fundamental results in extreme value theory, and so are the proofs of their consistency. Finally, we apply these estimators to a representative collection of synthetic and real-world data. According to their estimates, real-world scale-free networks are definitely not as rare as one would conclude based on the popular but unrealistic assumption that real-world data comes from power laws of pristine purity, void of noise and deviations.
Revolution dynamics is studied through a minimal Ising model with three main influences (fields): personal conservatism (power-law distributed), inter-personal and group pressure, and a global field incorporating peer-to-peer and mass communications, which is generated bottom-up from the revolutionary faction. A rich phase diagram appears separating possible terminal stages of the revolution, characterizing failure phases by the features of the individuals who had joined the revolution. An exhaustive solution of the model is produced, allowing predictions to be made on the revolutions outcome.
Fractal scale-free networks are empirically known to exhibit disassortative degree mixing. It is, however, not obvious whether a negative degree correlation between nearest neighbor nodes makes a scale-free network fractal. Here we examine the possib ility that disassortativity in complex networks is the origin of fractality. To this end, maximally disassortative (MD) networks are prepared by rewiring edges while keeping the degree sequence of an initial uncorrelated scale-free network that is guaranteed to become fractal by rewiring edges. Our results show that most of MD networks with different topologies are not fractal, which demonstrates that disassortativity does not cause the fractal property of networks. In addition, we suggest that fractality of scale-free networks requires a long-range repulsive correlation in similar degrees.
Individuals are always limited by some inelastic resources, such as time and energy, which restrict them to dedicate to social interaction and limit their contact capacity. Contact capacity plays an important role in dynamics of social contagions, wh ich so far has eluded theoretical analysis. In this paper, we first propose a non-Markovian model to understand the effects of contact capacity on social contagions, in which each individual can only contact and transmit the information to a finite number of neighbors. We then develop a heterogeneous edge-based compartmental theory for this model, and a remarkable agreement with simulations is obtained. Through theory and simulations, we find that enlarging the contact capacity makes the network more fragile to behavior spreading. Interestingly, we find that both the continuous and discontinuous dependence of the final adoption size on the information transmission probability can arise. And there is a crossover phenomenon between the two types of dependence. More specifically, the crossover phenomenon can be induced by enlarging the contact capacity only when the degree exponent is above a critical degree exponent, while the the final behavior adoption size always grows continuously for any contact capacity when degree exponent is below the critical degree exponent.
Despite the structural properties of online social networks have attracted much attention, the properties of the close-knit friendship structures remain an important question. Here, we mainly focus on how these mesoscale structures are affected by th e local and global structural properties. Analyzing the data of four large-scale online social networks reveals several common structural properties. It is found that not only the local structures given by the indegree, outdegree, and reciprocal degree distributions follow a similar scaling behavior, the mesoscale structures represented by the distributions of close-knit friendship structures also exhibit a similar scaling law. The degree correlation is very weak over a wide range of the degrees. We propose a simple directed network model that captures the observed properties. The model incorporates two mechanisms: reciprocation and preferential attachment. Through rate equation analysis of our model, the local-scale and mesoscale structural properties are derived. In the local-scale, the same scaling behavior of indegree and outdegree distributions stems from indegree and outdegree of nodes both growing as the same function of the introduction time, and the reciprocal degree distribution also shows the same power-law due to the linear relationship between the reciprocal degree and in/outdegree of nodes. In the mesoscale, the distributions of four closed triples representing close-knit friendship structures are found to exhibit identical power-laws, a behavior attributed to the negligible degree correlations. Intriguingly, all the power-law exponents of the distributions in the local-scale and mesoscale depend only on one global parameter -- the mean in/outdegree, while both the mean in/outdegree and the reciprocity together determine the ratio of the reciprocal degree of a node to its in/outdegree.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا