ﻻ يوجد ملخص باللغة العربية
Gini-type correlation coefficients have become increasingly important in a variety of research areas, including economics, insurance and finance, where modelling with heavy-tailed distributions is of pivotal importance. In such situations, naturally, the classical Pearson correlation coefficient is of little use. On the other hand, it has been observed that when light-tailed situations are of interest, and hence when both the Gini-type and Pearson correlation coefficients are well-defined and finite, then these coefficients are related and sometimes even coincide. In general, understanding how the correlation coefficients above are related has been an illusive task. In this paper we put forward arguments that establish such a connection via certain regression-type equations. This, in turn, allows us to introduce a Gini-type Weighted Insurance Pricing Model that works in heavy-tailed situation and thus provides a natural alternative to the classical Capital Asset Pricing Model. We illustrate our theoretical considerations using several bivariate distributions, such as elliptical and those with heavy-tailed Pareto margins.
In this paper we propose a class of weighted rank correlation coefficients extending the Spearmans rho. The proposed class constructed by giving suitable weights to the distance between two sets of ranks to place more emphasis on items having low ran
We consider the fitting of heavy tailed data and distribution with a special attention to distributions with a non--standard shape in the body of the distribution. To this end we consider a dense class of heavy tailed distributions introduced recentl
The edges in networks are not only binary, either present or absent, but also take weighted values in many scenarios (e.g., the number of emails between two users). The covariate-$p_0$ model has been proposed to model binary directed networks with th
We propose an extended version of Gini index defined on the set of infinite utility streams, $X=Y^mathbb{N}$ where $Ysubset mathbb{R}$. For $Y$ containing at most finitely many elements, the index satisfies the generalized Pigou-Dalton transfer principles in addition to the anonymity axiom.
In this paper, we introduce a new three-parameter distribution based on the combination of re-parametrization of the so-called EGNB2 and transmuted exponential distributions. This combination aims to modify the transmuted exponential distribution via