ﻻ يوجد ملخص باللغة العربية
It is proposed to employ the P,T-odd Faraday effect, i.e. rotation of the polarization plane of the light propagating through a medium in presence of the electric field, as a tool for observation of P,T-odd effects caused by CP violation within the Standard Model. For this purpose the vapors of heavy atoms like Tl, Pb, Bi are most suitable. Estimates within the Standard Model show: provided that applied field is about 10^5 V/cm and the optical length can be as large as 70000 km, the rotation angle may reach the value corresponding to the recently observable values (10^{-9} rad). These estimates demonstrate that the P,T-odd Faraday effect observations may effectively compete with the recent measurements of the electron spin rotation in an external electric field, performed with diatomic molecules. These measurements exclude the P,T-odd effects at the level 9 orders of magnitude higher than the predictions of the Standard Model.
Accurate evaluation of the $mathcal{P}$,$mathcal{T}$-odd Faraday effect (rotation of the polarization plane for the light propagating through a medium in presence of an external electric field) is presented. This effect can arise only due to the $mat
Present limit on the electron electric dipole moment ($e$EDM) is based on the electron spin precession measurement. We propose an alternative approach - observation of the $mathcal{P}$,$mathcal{T}$-odd Faraday effect in an external electric field on
We report the experimental observation of the rotation of the polarization plane of light propagating in a gas of fast-spinning molecules (molecular super-rotors). In the observed effect, related to Fermis prediction of polarization drag by a rotatin
Using the worldline method, we derive an effective action of the bosonic sector of the Standard Model by integrating out the fermionic degrees of freedom. The CP violation stemming from the complex phase in the CKM matrix gives rise to CP-violating o
The present constraint on the space parity ($mathcal{P}$) and time reflection invariance ($mathcal{T}$) violating electron electric dipole moment ($e$EDM) is based on the observation of the electron spin precession in an external electric field using