ﻻ يوجد ملخص باللغة العربية
Trust and reputation models for distributed, collaborative systems have been studied and applied in several domains, in order to stimulate cooperation while preventing selfish and malicious behaviors. Nonetheless, such models have received less attention in the process of specifying and analyzing formally the functionalities of the systems mentioned above. The objective of this paper is to define a process algebraic framework for the modeling of systems that use (i) trust and reputation to govern the interactions among nodes, and (ii) communication models characterized by a high level of adaptiveness and flexibility. Hence, we propose a formalism for verifying, through model checking techniques, the robustness of these systems with respect to the typical attacks conducted against webs of trust.
Collective Adaptive Systems (CAS) consist of a large number of spatially distributed heterogeneous entities with decentralised control and varying degrees of complex autonomous behaviour that may be competing for shared resources even when collaborat
We propose a process calculus, named AbC, to study the behavioural theory of interactions in collective-adaptive systems by relying on attribute-based communication. An AbC system consists of a set of parallel components each of which is equipped wit
The salient features of blockchain, such as decentralisation and transparency, have allowed the development of Decentralised Trust and Reputation Management Systems (DTRMS), which mainly aim to quantitatively assess the trustworthiness of the network
In this extended abstract a view on the role of Formal Methods in System Engineering is briefly presented. Then two examples of useful analysis techniques based on solid mathematical theories are discussed as well as the software tools which have bee
Cell injection is a technique in the domain of biological cell micro-manipulation for the delivery of small volumes of samples into the suspended or adherent cells. It has been widely applied in various areas, such as gene injection, in-vitro fertili