ﻻ يوجد ملخص باللغة العربية
We use the SPARC (Spitzer Photometry & Accurate Rotation Curves) database to study the relation between the central surface density of stars Sstar and dynamical mass Sdyn in 135 disk galaxies (S0 to dIrr). We find that Sdyn correlates tightly with Sstar over 4 dex. This central density relation can be described by a double power law. High surface brightness galaxies are consistent with a 1:1 relation, suggesting that they are self-gravitating and baryon dominated in the inner parts. Low surface brightness galaxies systematically deviate from the 1:1 line, indicating that the dark matter contribution progressively increases but remains tightly coupled to the stellar one. The observed scatter is small (~0.2 dex) and largely driven by observational uncertainties. The residuals show no correlations with other galaxy properties like stellar mass, size, or gas fraction.
We derive the stellar-to-halo mass relation (SHMR), namely $f_starpropto M_star/M_{rm h}$ versus $M_star$ and $M_{rm h}$, for early-type galaxies from their near-IR luminosities (for $M_star$) and the position-velocity distributions of their globular
We use the Cosmic Assembly Deep Near-infrared Extragalactic Legacy Survey (CANDELS) data to study the relationship between quenching and the stellar mass surface density within the central radius of 1 kpc ($Sigma_1$) of low-mass galaxies (stellar mas
We study the stellar populations of the brightest group galaxies (BGGs) in groups with different dynamical states, using GAMA survey data. We use two independent, luminosity dependent indicators to probe the relaxedness of their groups; the magnitude
For many massive compact galaxies, their dynamical masses ($M_mathrm{dyn} propto sigma^2 r_mathrm{e}$) are lower than their stellar masses ($M_star$). We analyse the unphysical mass discrepancy $M_star / M_mathrm{dyn} > 1$ on a stellar-mass-selected
Previous studies of fueling black holes (BHs) in galactic nuclei have argued (on scales ~0.01-1000pc) accretion is dynamical with inflow rates $dot{M}simeta,M_{rm gas}/t_{rm dyn}$ in terms of gas mass $M_{rm gas}$, dynamical time $t_{rm dyn}$, and so