ﻻ يوجد ملخص باللغة العربية
There is substantial evidence for disk formation taking place during the early stages of star formation and for most stars being born in multiple systems; however, protostellar multiplicity and disk searches have been hampered by low resolution, sample bias, and variable sensitivity. We have conducted an unbiased, high-sensitivity Karl G. Jansky Very Large Array (VLA) survey toward all known protostars (n = 94) in the Perseus molecular cloud (d~230 pc), with a resolution of ~15 AU (0.06) at 8 mm. We have detected candidate protostellar disks toward 17 sources (with 12 of those in the Class 0 stage) and we have found substructure on < 50AU scales for three Class 0 disk candidates, possibly evidence for disk fragmentation. We have discovered 16 new multiple systems (or new components) in this survey; the new systems have separations < 500 AU and 3 by < 30 AU. We also found a bi-modal distribution of separations, with peaks at ~75 AU and ~3000 AU, suggestive of formation through two distinct mechanisms: disk and turbulent fragmentation. The results from this survey demonstrate the necessity and utility of uniform, unbiased surveys of protostellar systems at millimeter and centimeter wavelengths.
We present a multiplicity study of all known protostars (94) in the Perseus molecular cloud from a Karl G. Jansky Very Large Array (VLA) survey at Ka-band (8 mm and 1 cm) and C-band (4 cm and 6.6 cm). The observed sample has a bolometric luminosity r
We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of multiple protostar systems in the Perseus molecular cloud previously detected by the Karl G. Jansky Very Large Array (VLA). We observed 17 close ($<$600~AU separation) mul
We have conducted a survey of 328 protostars in the Orion molecular clouds with ALMA at 0.87 mm at a resolution of $sim$0.1 (40 au), including observations with the VLA at 9 mm toward 148 protostars at a resolution of $sim$0.08 (32 au). This is the l
We present the first dust emission results toward a sample of seven protostellar disk candidates around Class 0 and I sources in the Perseus molecular cloud from the VLA Nascent Disk and Multiplicity (VANDAM) survey with ~0.05 or 12 AU resolution. To
Magnetic fields can regulate disk formation, accretion and jet launching. Until recently, it has been difficult to obtain high resolution observations of the magnetic fields of the youngest protostars in the critical region near the protostar. The VA