ﻻ يوجد ملخص باللغة العربية
We study a $U(1) times U(1)$ gauge theory discussing its vortex solutions and supersymmetric extension. In our set-upon the dynamics of one of two Abelian gauge fields is governed by a Maxwell term, the other by a Chern-Simons term. The two sectors via a BF gauge field mixing and a Higgs portal term that connects the two complex scalars. We also consider the supersymmetric version of this system which allows to find for the bosonic sector BPS equations in which an additional real scalar field enters into play. We study numerically the field equations finding vortex solutions with both magnetic flux and electric charge.
We study vortex solutions in Abelian Chern-Simons-Higgs theories with visible and hidden sectors. We first consider the case in which the two sectors are connected through a BF-like gauge mixing term with no explicit interaction between the the two s
We study vortex solutions in a theory with dynamics governed by two weakly coupled Abelian Higgs models, describing a hidden sector and a visible sector. We analyze the radial dependence of the axially symmetric solutions constructed numerically and
Noncommutative Maxwell-Chern-Simons theory in 3-dimensions is defined in terms of star product and noncommutative fields. Seiberg-Witten map is employed to write it in terms of ordinary fields. A parent action is introduced and the dual action is der
We examine the energetics of $Q$-balls in Maxwell-Chern-Simons theory in two space dimensions. Whereas gauged $Q$-balls are unallowed in this dimension in the absence of a Chern-Simons term due to a divergent electromagnetic energy, the addition of a
We find self-dual vortex solutions in a Maxwell-Chern-Simons model with anomalous magnetic moment. From a recently developed N=2-supersymmetric extension, we obtain the proper Bogomolnyi equations together with a Higgs potential allowing both topological and non-topological phases in the theory.