ﻻ يوجد ملخص باللغة العربية
An essential property of magnetic devices is the relaxation rate in magnetic switching which strongly depends on the energy dissipation and magnetic inertia of the magnetization dynamics. Both parameters are commonly taken as a phenomenological entities. However very recently, a large effort has been dedicated to obtain Gilbert damping from first principles. In contrast, there is no ab initio study that so far has reproduced measured data of magnetic inertia in magnetic materials. In this letter, we present and elaborate on a theoretical model for calculating the magnetic moment of inertia based on the torque-torque correlation model. Particularly, the method has been applied to bulk bcc Fe, fcc Co and fcc Ni in the framework of the tight-binding approximation and the numerical values are comparable with recent experimental measurements. The theoretical results elucidate the physical origin of the moment of inertia based on the electronic structure. Even though the moment of inertia and damping are produced by the spin-orbit coupling, our analysis shows that they are caused by undergo different electronic structure mechanisms.
The moment of inertia for nuclear collective rotations was derived within the semiclassical approach based on the cranking model and the Strutinsky shell-correction method by using the non-perturbative periodic-orbit theory in the phase space variabl
We present a systematic density functional theory (DFT) plus Hubbard $U$ study of structural trends and the stability of different magnetically ordered states across the rare-earth nickelate series, $R$NiO$_3$, with $R$ from Lu to La. In particular,
Within the covariant formulation of light-front dynamics, we calculate the state vector of a physical fermion in the Yukawa model. The state vector is decomposed in Fock sectors and we consider the first three ones: the single constituent fermion, th
A precise moment of inertia measurement for PSR J0737-3039A in the double pulsar system is expected within the next five years. We present here a new method of mapping the anticipated measurement of the moment of inertia directly into the neutron sta
The magnets are typically classified into Stoner and Heisenberg type, depending on the itinerant or localized nature of the constituent magnetic moments. In this work, we investigate theoretically the behaviour of the magnetic moments of iron and cob