ﻻ يوجد ملخص باللغة العربية
We compute the chiral condensate in 2+1-flavor QCD through the spectrum of low-lying eigenmodes of Dirac operator. The number of eigenvalues of the Dirac operator is evaluated using a stochastic method with an eigenvalue filtering technique on the background gauge configurations generated by lattice QCD simulations including the effects of dynamical up, down and strange quarks described by the Mobius domain-wall fermion formulation. The low-lying spectrum is related to the chiral condensate, which is one of the leading order low-energy constants in chiral effective theory, as dictated by the Banks-Casher relation. The spectrum shape and its dependence on the sea quark masses calculated in numerical simulations are consistent with the expectation from one-loop chiral perturbation theory. After taking the chiral limit as well as the continuum limit using the data at three lattice spacings ranging 0.080-0.045 fm, we obtain $Sigma^{1/3}$(2 GeV) = 270.0(4.9) MeV, with the error combining those from statistical and from various sources of systematic errors. Finite volume effect is confirmed to be under control by a direct comparison of the results from two different volumes at the lightest available sea quarks corresponding to 230 MeV pions.
In a sector of fixed topological charge, the chiral condensate has a discontinuity given by the Banks-Casher formula also in the case of one-flavor QCD. However, at fixed theta-angle, the chiral condensate remains constant when the quark mass crosses
In the $epsilon$-domain of QCD we have obtained exact analytical expressions for the eigenvalue density of the Dirac operator at fixed $theta e 0$ for both one and two flavors. These results made it possible to explain how the different contribution
We derive exact analytical expressions for the spectral density of the Dirac operator at fixed theta-angle in the microscopic domain of one-flavor QCD. These results are obtained by performing the sum over topological sectors using novel identities i
We calculate the spectral function of the QCD Dirac operator using the four-dimensional effective operator constructed from the Mobius domain-wall implementation. We utilize the eigenvalue filtering technique combined with the stochastic estimate of
We generate $2+1$ flavor QCD configurations near the physical point on a $96^4$ lattice employing the 6-APE stout smeared Wilson clover action with a nonperturbative $c_{rm SW}$ and the Iwasaki gauge action at $beta=1.82$. The physical point is estim