ﻻ يوجد ملخص باللغة العربية
Topological properties of crystals and quasicrystals is a subject of recent and growing interest. This Letter reports an experiment where, for certain quasicrystals, these properties can be directly retrieved from diffraction. We directly observe, using an interferometric approach, all the topological invariants of finite-length Fibonacci chains in their diffraction pattern. We also demonstrate quantitatively the stability of these topological invariants with respect to structural disorder.
In two and three spatial dimensions, the transverse response experienced by a charged particle on a lattice in a uniform magnetic field is proportional to a topological invariant, the first Chern number, characterizing the energy bands of the underly
In this paper, we characterize quasicrystalline interacting topological phases of matter i.e., phases protected by some quasicrystalline structure. We show that the elasticity theory of quasicrystals, which accounts for both phonon and phason modes,
We have implemented a virtual Youngs double slit experiment for hard X-ray photons with micro-fabricated bi-prisms. We observe fringe patterns with a scintillator, and quantify interferograms by detecting X-ray fluorescence from a scanned 30nm Cr met
In semiconductor physics, many essential optoelectronic material parameters can be experimentally revealed via optical spectroscopy in sufficiently large magnetic fields. For monolayer transition-metal dichalcogenide semiconductors, this field scale
The knowledge of how the magnetization looks inside a ferromagnet is often hindered by the limitations of the available experimental methods that are sensitive only to the surface regions or limited in spatial resolution. We report the 3D tomographic