ﻻ يوجد ملخص باللغة العربية
Let $frak{g}$ be a finite dimensional simple complex Lie algebra and $U=U_q(frak{g})$ the quantized enveloping algebra (in the sense of Jantzen) with $q$ being generic. In this paper, we show that the center $Z(U_q(frak{g}))$ of the quantum group $U_q(frak{g})$ is isomorphic to a monoid algebra, and that $Z(U_q(frak{g}))$ is a polynomial algebra if and only if $frak{g}$ is of type $A_1, B_n, C_n, D_{2k+2}, E_7, E_8, F_4$ or $G_2.$ Moreover, in case $frak{g}$ is of type $D_{n}$ with $n$ odd, then $Z(U_q(frak{g}))$ is isomorphic to a quotient algebra of a polynomial algebra in $n+1$ variables with one relation; in case $frak{g}$ is of type $E_6$, then $Z(U_q(frak{g}))$ is isomorphic to a quotient algebra of a polynomial algebra in fourteen variables with eight relations; in case $frak{g}$ is of type $A_{n}$, then $Z(U_q(frak{g}))$ is isomorphic to a quotient algebra of a polynomial algebra described by $n$-sequences.
We propose a quantum analogue of a Tits-Kantor-Koecher algebra with a Jordan torus as an coordinated algebra by looking at the vertex operator construction over a Fock space.
Let $L$ be a Lie algebra of Block type over $C$ with basis ${L_{alpha,i},|,alpha,iinZ}$ and brackets $[L_{alpha,i},L_{beta,j}]=(beta(i+1)-alpha(j+1))L_{alpha+beta,i+j}$. In this paper, we shall construct a formal distribution Lie algebra of $L$. Then
We describe a Nichols-algebra-motivated construction of an octuplet chiral algebra that is a W_3-counterpart of the triplet algebra of (p,1) logarithmic models of two-dimensional conformal field theory.
We introduce a new quantized enveloping superalgebra $mathfrak{U}_q{mathfrak{p}}_n$ attached to the Lie superalgebra ${mathfrak{p}}_n$ of type $P$. The superalgebra $mathfrak{U}_q{mathfrak{p}}_n$ is a quantization of a Lie bisuperalgebra structure on
For a C1-cofinite vertex algebra V, we give an efficient way to calculate Zhus algebra A(V) of V with respect to its C1-generators and relations. We use two examples to explain how this method works.