ترغب بنشر مسار تعليمي؟ اضغط هنا

Fuchsia and master integrals for splitting functions from differential equations in QCD

116   0   0.0 ( 0 )
 نشر من قبل Oleksandr Gituliar
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the recent progress in reducing differential equations for Feynman master integrals to canonical form with the help of a method proposed by Roman Lee. For the first time, we present Fuchsia --- our open-source implementation of the Lee algorithm written in Python using mathematical routines of a free computer algebra system SageMath. We demonstrate Fuchsia by reducing differential equations for NLO contributions to splitting functions in QCD, which contain both loops and legs integrals.



قيم البحث

اقرأ أيضاً

130 - O. Gituliar , V. Magerya 2017
We present $text{Fuchsia}$ $-$ an implementation of the Lee algorithm, which for a given system of ordinary differential equations with rational coefficients $partial_x,mathbf{f}(x,epsilon) = mathbb{A}(x,epsilon),mathbf{f}(x,epsilon)$ finds a basis t ransformation $mathbb{T}(x,epsilon)$, i.e., $mathbf{f}(x,epsilon) = mathbb{T}(x,epsilon),mathbf{g}(x,epsilon)$, such that the system turns into the epsilon form: $partial_x, mathbf{g}(x,epsilon) = epsilon,mathbb{S}(x),mathbf{g}(x,epsilon)$, where $mathbb{S}(x)$ is a Fuchsian matrix. A system of this form can be trivially solved in terms of polylogarithms as a Laurent series in the dimensional regulator $epsilon$. That makes the construction of the transformation $mathbb{T}(x,epsilon)$ crucial for obtaining solutions of the initial equations. In principle, $text{Fuchsia}$ can deal with any regular systems, however its primary task is to reduce differential equations for Feynman master integrals. It ensures that solutions contain only regular singularities due to the properties of Feynman integrals.
271 - Johannes M. Henn 2014
Over the last year significant progress was made in the understanding of the computation of Feynman integrals using differential equations. These lectures give a review of these developments, while not assuming any prior knowledge of the subject. Aft er an introduction to differential equations for Feynman integrals, we point out how they can be simplified using algorithms available in the mathematical literature. We discuss how this is related to a recent conjecture for a canonical form of the equations. We also discuss a complementary approach that allows based on properties of the space-time loop integrands, and explain how the ideas of leading singularities and d-log representations can be used to find an optimal basis for the differential equations. Finally, as an application of the differential equations method we show how single-scale integrals can be bootstrapped using the Drinfeld associator of a differential equation.
This is a sequel of our previous paper where we described an algorithm to find a solution of differential equations for master integrals in the form of an $epsilon$-expansion series with numerical coefficients. The algorithm is based on using general ized power series expansions near singular points of the differential system, solving difference equations for the corresponding coefficients in these expansions and using matching to connect series expansions at two neighboring points. Here we use our algorithm and the corresponding code for our example of four-loop generalized sunset diagrams with three massive and two massless propagators, in order to obtain new analytical results. We analytically evaluate the master integrals at threshold, $p^2=9 m^2$, in an expansion in $epsilon$ up to $epsilon^1$. With the help of our code, we obtain numerical results for the threshold master integrals in an $epsilon$-expansion with the accuracy of 6000 digits and then use the PSLQ algorithm to arrive at analytical values. Our basis of constants is build from bases of multiple polylogarithm values at sixth roots of unity.
We present a novel type of differential equations for on-shell loop integrals. The equations are second-order and importantly, they reduce the loop level by one, so that they can be solved iteratively in the loop order. We present several infinite se ries of integrals satisfying such iterative differential equations. The differential operators we use are best written using momentum twistor space. The use of the latter was advocated in recent papers discussing loop integrals in N=4 super Yang-Mills. One of our motivations is to provide a tool for deriving analytical results for scattering amplitudes in this theory. We show that the integrals needed for planar MHV amplitudes up to two loops can be thought of as deriving from a single master topology. The master integral satisfies our differential equations, and so do most of the reduced integrals. A consequence of the differential equations is that the integrals we discuss are not arbitrarily complicated transcendental functions. For two specific two-loop integrals we give the full analytic solution. The simplicity of the integrals appearing in the scattering amplitudes in planar N=4 super Yang-Mills is strongly suggestive of a relation to the conjectured underlying integrability of the theory. We expect these differential equations to be relevant for all planar MHV and non-MHV amplitudes. We also discuss possible extensions of our method to more general classes of integrals.
We provide a sufficient condition for avoiding squared propagators in the intermediate stages of setting up differential equations for loop integrals. This condition is satisfied in a large class of two- and three-loop diagrams. For these diagrams, t he differential equations can thus be computed using unitarity-compatible integration-by-parts reductions, which simplify the reduction problem by avoiding integrals with higher-power propagators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا