ﻻ يوجد ملخص باللغة العربية
A three-level atomic medium can be made transparent to a resonant probe field in the presence of a strong control field acting on an adjacent atomic transition to a long-lived state, which can be represented by a highly excited Rydberg state. The long-range interactions between the Rydberg state atoms then translate into strong, non-local, dispersive or absorptive interactions between the probe photons, which can be used to achieve deterministic quantum logic gates and single photon sources. Here we show that long-range dipole-dipole exchange interaction with one or more spins -- two-level systems represented by atoms in suitable Rydberg states -- can play the role of control field for the optically-dense medium of atoms. This induces transparency of the medium for a number of probe photons $n_p$ not exceeding the number of spins $n_s$, while all the excess photons are resonantly absorbed upon propagation. In the most practical case of a single spin atom prepared in the Rydberg state, the medium is thus transparent only to a single input probe photon. For larger number of spins $n_s$, all $n_p leq n_s$ photon components of the probe field would experience transparency but with an $n_p$-dependent group velocity.
We present experimental results on the influence of magnetic fields and laser polarization on electromagnetically induced transparency (EIT) using Rydberg levels of $^{87}$Rb atoms. The measurements are performed in a room temperature vapor cell with
We investigate the transient optical response property of an electromagnetically induced transparency (EIT) in a cold Rydberg atomic gas. We show that both the transient behavior and the steady-state EIT spectrum of the system depend strongly on Rydb
We develop an approach to generate finite-range atomic interactions via optical Rydberg-state excitation and study the underlying excitation dynamics in theory and experiment. In contrast to previous work, the proposed scheme is based on resonant opt
We demonstrate theoretically a parallelized C-NOT gate which allows to entangle a mesoscopic ensemble of atoms with a single control atom in a single step, with high fidelity and on a microsecond timescale. Our scheme relies on the strong and long-ra
We present combined measurements of the spatially-resolved optical spectrum and the total excited-atom number in an ultracold gas of three-level atoms under electromagnetically induced transparency conditions involving high-lying Rydberg states. The