Rotationally-Driven Fragmentation for the Formation of the Binary Protostellar System L1551 IRS 5


الملخص بالإنكليزية

Either bulk rotation or local turbulence is widely invoked to drive fragmentation in collapsing cores so as to produce multiple star systems. Even when the two mechanisms predict different manners in which the stellar spins and orbits are aligned, subsequent internal or external interactions can drive multiple systems towards or away from alignment thus masking their formation process. Here, we demonstrate that the geometrical and dynamical relationship between the binary system and its surrounding bulk envelope provide the crucial distinction between fragmentation models. We find that the circumstellar disks of the binary protostellar system L1551 IRS 5 are closely parallel not just with each other but also with their surrounding flattened envelope. Measurements of the relative proper motion of the binary components spanning nearly 30 yr indicate an orbital motion in the same sense as the envelope rotation. Eliminating orbital solutions whereby the circumstellar disks would be tidally truncated to sizes smaller than are observed, the remaining solutions favor a circular or low-eccentricity orbit tilted by up to $sim$25$^circ$ from the circumstellar disks. Turbulence-driven fragmentation can generate local angular momentum to produce a coplanar binary system, but which bears no particular relationship with its surrounding envelope. Instead, the observed properties conform with predictions for rotationally-driven fragmentation. If the fragments were produced at different heights or on opposite sides of the midplane in the flattened central region of a rotating core, the resulting protostars would then exhibit circumstellar disks parallel with the surrounding envelope but tilted from the orbital plane as is observed.

تحميل البحث