ترغب بنشر مسار تعليمي؟ اضغط هنا

The design and basic performance of a Spiral Fiber Tracker for the J-PARC E36 experiment

96   0   0.0 ( 0 )
 نشر من قبل Oleg Mineev
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A spiral fiber tracker (SFT) has been designed and produced for the J-PARC E36 experiment as an element of the tracking system for conducting a high-resolution momentum measurement of charge particles from kaon decays. A novel technique to wind the pre-made fiber ribbons spirally was employed for the configuration with four detector layers made of 1 mm diameter plastic scintillating fibers. Good position alignment and sufficiently high detection efficiency for charged particles with minimum ionizing energy were confirmed in cosmic ray test. The tracker was successfully used in the E36 experiment.



قيم البحث

اقرأ أيضاً

The J-PARC E56 experiment aims to search for sterile neutrinos at the J-PARC Materials and Life Science Experimental Facility (MLF). In order to examine the feasibility of the experiment, we measured the background rates of different detector candida te sites, which are located at the third floor of the MLF, using a detector consisting of plastic scintillators with a fiducial mass of 500 kg. The result of the measurements is described in this article. The gammas and neutrons induced by the beam as well as the backgrounds from the cosmic rays were measured.
200 - M.Harada , S.Hasegawa , Y.Kasugai 2015
On April 2015, the J-PARC E56 (JSNS2: J-PARC Sterile Neutrino Search using neutrinos from J-PARC Spallation Neutron Source) experiment officially obtained stage-1 approval from J-PARC. We have since started to perform liquid scintillator R&D for impr oving energy resolution and fast neutron rejection. Also, we are studying Avalanche Photo-Diodes (SiPM) inside the liquid scintillator. In addition to the R&D work, a background measurement for the proton beam bunch timing using a small liquid scintillator volume was planned, and the safety discussions for the measurement have been done. This report describes the status of the R&D work and the background measurements, in addition to the milestones required before stage-2 approval.
178 - M.Harada , S.Hasegawa , Y.Kasugai 2016
The JSNS2 (J-PARC E56) experiment aims to search for sterile neutrinos at the J-PARC Materials and Life Sciences Experimental Facility (MLF).After the submission of a proposal to the J-PARC PAC, stage-1 approval was granted to the JSNS2 experiment. T he approval followed a series of background measurements which were performed in 2014. Subsequent for stage-1 approval, the JSNS2 collaboration has made continuous efforts to write a Technical Design Report (TDR).This TDR will include two major items as discussed in the previous status report for the 20th J-PARC PAC: (1) A realistic detector location (2) Well understood and realistic detector performance using simulation studies, primarily in consideration of fast neutron rejection. Since August we have been in discussions with MLF staff regarding an appropriate detector location. We are also in the process of setting up a Monte Carlo (MC) simulation framework in order to study detectors performance in realistic conditions. In addition, we have pursued hardware R&D work for the liquid scintillator (LS) and to improve the dynamic range of the 10 photomultiplier tubes (PMTs). The LS R&D works includes Cherenkov studies inside the LS, and a Pulse Shape Discrimination (PSD) study with a test-beam, performed at Tohoku University. We also estimate the PSD performance of a full-sized detector using a detailed MC simulation. In this status report, we describe progress on this work.
101 - K. Abe , H. Aihara , A. Ajmi 2019
In this document, technical details of the upgrade plan of the J-PARC neutrino beamline for the extension of the T2K experiment are described. T2K has proposed to accumulate data corresponding to $2times{}10^{22}$ protons-on-target in the next decade , aiming at an initial observation of CP violation with $3sigma$ or higher significance in the case of maximal CP violation. Methods to increase the neutrino beam intensity, which are necessary to achieve the proposed data increase, are described.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا