A cluster-transfer experiment of $^9rm{Be}(^9rm{Be},^{14}rm{C}rightarrowalpha+^{10}rm{Be})alpha$ at an incident energy of 45 MeV was carried out in order to investigate the molecular structure in high-lying resonant states in $^{14}$C. This reaction is of extremely large $Q$-value, making it an excellent case to select the reaction mechanism and the final states in outgoing nuclei. The high-lying resonances in $^{14}$C are reconstructed for three sets of well discriminated final states in $^{10}$Be. The results confirm the previous decay measurements with clearly improved decay-channel selections and show also a new state at 23.5(1) MeV. The resonant states at 22.4(3) and 24.0(3) MeV decay primarily into the typical molecular states at about 6 MeV in $^{10}$Be, indicating a well developed cluster structure in these high-lying states in $^{14}$C. Further measurements of more states of this kind are suggested.