We describe recent work connecting combinatorics and tropical/non-Archimedean geometry to Diophantine geometry, particularly the uniformity conjectures for rational points on curves and for torsion packets of curves. The method of Chabauty--Coleman lies at the heart of this connection, and we emphasize the clarification that tropical geometry affords throughout the theory of $p$-adic integration, especially to the comparison of analytic continuations of $p$-adic integrals and to the analysis of zeros of integrals on domains admitting monodromy.