ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutron Star Mass-Radius Constraints using Evolutionary Optimization

84   0   0.0 ( 0 )
 نشر من قبل Sharon Morsink
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The equation of state of cold supra-nuclear-density matter, such as in neutron stars, is an open question in astrophysics. A promising method for constraining the neutron star equation of state is modelling pulse profiles of thermonuclear X-ray burst oscillations from hotspots on accreting neutron stars. The pulse profiles, constructed using spherical and oblate neutron star models, are comparable to what would be observed by a next-generation X-ray timing instrument like ASTROSAT, NICER, or LOFT. In this paper, we showcase the use of an evolutionary optimization algorithm to fit pulse profiles to determine the best-fit masses and radii. By fitting synthetic data, we assess how well the optimization algorithm can recover the input parameters. Multiple Poisson realizations of the synthetic pulse profiles, constructed with 1.6 million counts and no background, were fitted with the Ferret algorithm to analyze both statistical and degeneracy-related uncertainty, and to explore how the goodness-of-fit depends on the input parameters. For the regions of parameter space sampled by our tests, the best-determined parameter is the projected velocity of the spot along the observers line-of-sight, with an accuracy of $le3$% compared to the true value and with $le5$% statistical uncertainty. The next best-determined are the mass and radius; for a neutron star with a spin frequency of 600,Hz, the best-fit mass and radius are accurate to $le5$%, with respective uncertainties of $le7$% and $le10$%. The accuracy and precision depend on the observer inclination and spot co-latitude, with values of $sim1$ % achievable in mass and radius if both the inclination and co-latitude are > 60 degrees.



قيم البحث

اقرأ أيضاً

We introduce a new, powerful method to constrain properties of neutron stars (NSs). We show that the total mass of GW170817 provides a reliable constraint on the stellar radius if the merger did not result in a prompt collapse as suggested by the int erpretation of associated electromagnetic emission. The radius R_1.6 of nonrotating NSs with a mass of 1.6 M_sun can be constrained to be larger than 10.68_{-0.04}^{+0.15} km, and the radius R_max of the nonrotating maximum mass configuration must be larger than 9.60_{-0.03}^{+0.14} km. We point out that detections of future events will further improve these constraints. Moreover, we show that a future event with a signature of a prompt collapse of the merger remnant will establish even stronger constraints on the NS radius from above and the maximum mass M_max of NSs from above. These constraints are particularly robust because they only require a measurement of the chirp mass and a distinction between prompt and delayed collapse of the merger remnant, which may be inferred from the electromagnetic signal or even from the presence/absence of a ringdown gravitational-wave (GW) signal. This prospect strengthens the case of our novel method of constraining NS properties, which is directly applicable to future GW events with accompanying electromagnetic counterpart observations. We emphasize that this procedure is a new way of constraining NS radii from GW detections independent of existing efforts to infer radius information from the late inspiral phase or postmerger oscillations, and it does not require particularly loud GW events.
The Rapid Burster (MXB 1730-335) is a unique object, showing both type I and type II X-ray bursts. A type I burst of the Rapid Burster was observed with Swift/XRT on 2009 March 5, showing photospheric radius expansion for the first time in this sourc e. We report here on the mass and radius determination from this photospheric radius expansion burst using a Bayesian approach. After marginalization over the likely distance of the system (5.8-10 kpc) we obtain M=1.1+/-0.3 M_sun and R=9.6+/-1.5 km (1-sigma uncertainties) for the compact object, ruling out the stiffest equations of state for the neutron star. We study the sensitivity of the results to the distance, the color correction factor, and the hydrogen mass fraction in the envelope. We find that only the distance plays a crucial role.
In this paper we show that X-ray spectral observations of the ATHENA mission, which is planned to launch in 2031, can constrain the equation of state of superdense matter. We use our well-constrained continuum fitting method for mass and radius deter mination of the neutron star. Model spectra of the emission from a neutron star were calculated using the atmosphere code ATM24. In the next step, those models were fitted to a simulated spectra of the neutron star calculated for ATHENAs WFI detector, using the satellite calibration files. To simulate the spectra we assumed three different values of effective temperatures, surface gravities and gravitational redshifts. There cases are related to the three different neutron star masses and radii. This analysis allows us to demonstrate the precision of our method and demonstrate the need for a fast detector onboard of ATHENA. A large grid of theoretical spectra was calculated with various parameters and a hydrogen-helium-iron composition of solar proportion. These spectra were fitted to the simulated spectrum to estimate the precision of mass and radius determination. In each case, we obtained very precise mass and radius values with errors in the range 3--10% for mass and in the range 2--8% for radius within the 1-sigma confidence error. We show here that with the ATHENA WFI detector, such a determination could be used to constrain the equation of state of superdense neutron star matter.
X-ray spectral analysis of quiescent low-mass X-ray binaries (LMXBs) has been one of the most common tools to measure the radius of neutron stars (NSs) for over a decade. So far, this method has been mainly applied to NSs in globular clusters, primar ily because of their well-constrained distances. Here, we study Chandra data of seven transient LMXBs in the Galactic plane in quiescence to investigate the potential of constraining the radius (and mass) of the NSs inhabiting these systems. We find that only two of these objects had X-ray spectra of sufficient quality to obtain reasonable constraints on the radius, with the most stringent being an upper limit of $Rlesssim$14.5 km for EXO 0748-676 (for assumed ranges for mass and distance). Using these seven sources, we also investigate systematic biases on the mass/radius determination; for Aql X-1 we find that omitting a power-law spectral component when it does not seem to be required by the data, results in peculiar trends in the obtained radius with changing mass and distance. For EXO 0748-676 we find that a slight variation in the lower limit of the energy range chosen for the fit leads to systematically different masses and radii. Finally, we simulated Athena spectra and found that some of the biases can be lifted when higher quality spectra are available and that, in general, the search for constraints on the equation of state of ultra-dense matter via NS radius and mass measurements may receive a considerable boost in the future.
114 - C. O. Heinke 2014
We use Chandra and XMM observations of the globular clusters $omega$ Cen and NGC 6397 to measure the spectrum of their quiescent neutron stars (NSs), and thus to constrain the allowed ranges of mass and radius for each. We also use Hubble Space Teles cope photometry of NGC 6397 to identify a potential optical companion to the quiescent NS, and find evidence that the companion lacks hydrogen. We carefully consider a number of systematic problems, and show that the choices of atmospheric composition, interstellar medium abundances, and cluster distances can have important effects on the inferred NS mass and radius. We find that for typical NS masses, the radii of both NSs are consistent with the 10-13 km range favored by recent nuclear physics experiments. This removes the evidence suggested by Guillot and collaborators for an unusually small NS radius, which relied upon the small inferred radius of the NGC 6397 NS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا