ﻻ يوجد ملخص باللغة العربية
Supernova (SN) 2015bh (or SNhunt275) was discovered in NGC 2770 on 2015 February with an absolute magnitude of Mr ~ -13.4 mag, and was initially classified as a SN impostor. Here we present the photometric and spectroscopic evolution of SN 2015bh from discovery to late phases (~ 1 yr after). In addition, we inspect archival images of the host galaxy up to ~ 21 yr before discovery, finding a burst ~ 1 yr before discovery, and further signatures of stellar instability until late 2014. Later on, the luminosity of the transient slowly increases, and a broad light curve peak is reached after about three months. We propose that the transient discovered in early 2015 could be a core-collapse SN explosion. The pre-SN luminosity variability history, the long-lasting rise and faintness first light curve peak suggests that the progenitor was a very massive, unstable and blue star, which exploded as a faint SN because of severe fallback of material. Later on, the object experiences a sudden brightening of 3 mag, which results from the interaction of the SN ejecta with circumstellar material formed through repeated past mass-loss events. Spectroscopic signatures of interaction are however visible at all epochs. A similar chain of events was previously proposed for the similar interacting SN 2009ip.
About 10% of stars more massive than ${approx},1.5,mathrm{M}_odot$ have strong, large-scale surface magnetic fields and are being discussed as progenitors of highly-magnetic white dwarfs and magnetars. The origin of these fields remains uncertain. Re
The nature of the progenitors and explosion mechanism of Type Iax supernovae (SNe Iax) remain a mystery. The single-degenerate (SD) systems that involve the incomplete pure deflagration explosions of near-Chandrasekhar-mass white dwarfs (WDs) have re
We perform calculations of our one-dimensional, two-zone disk model to study the long-term evolution of the circumstellar disk. In particular, we adopt published photoevaporation prescriptions and examine whether the photoevaporative loss alone, coup
In this paper we analyse the pre-explosion spectrum of SN2015bh by performing radiative transfer simulations using the CMFGEN code. This object has attracted significant attention due to its remarkable similarity to SN2009ip in both its pre- and post
We have witnessed a persistent puzzling anomaly in the muon magnetic moment that cannot be accounted for in the Standard Model even considering the large hadronic uncertainties. A new measurement is forthcoming, and it might give rise to a $5sigma$ c