ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining stochastic gravitational wave background from weak lensing of CMB B-modes

290   0   0.0 ( 0 )
 نشر من قبل Shabbir Shaikh
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A stochastic gravitational wave background (SGWB) will affect the CMB anisotropies via weak lensing. Unlike weak lensing due to large scale structure which only deflects photon trajectories, a SGWB has an additional effect of rotating the polarization vector along the trajectory. We study the relative importance of these two effects, deflection & rotation, specifically in the context of E-mode to B-mode power transfer caused by weak lensing due to SGWB. Using weak lensing distortion of the CMB as a probe, we derive constraints on the spectral energy density ($Omega_{GW}$) of the SGWB, sourced at different redshifts, without assuming any particular model for its origin. We present these bounds on $Omega_{GW}$ for different power-law models characterizing the SGWB, indicating the threshold above which observable imprints of SGWB must be present in CMB.



قيم البحث

اقرأ أيضاً

Gravitational waves (GWs) are subject to gravitational lensing in the same way as electromagnetic radiation. However, to date, no unequivocal observation of a lensed GW transient has been reported. Independently, GW observatories continue to search f or the stochastic GW signal which is produced by many transient events at high redshift. We exploit a surprising connection between the lensing of individual transients and limits to the background radiation produced by the unresolved population of binary back hole mergers: we show that it constrains the fraction of individually resolvable lensed binary black holes to less than $sim 4times 10^{-5}$ at present sensitivity. We clarify the interpretation of existing, low redshift GW observations (obtained assuming no lensing) in terms of their apparent lensed redshifts and masses and explore constraints from GW observatories at future sensitivity. Based on our results, recent claims of observations of lensed events are statistically disfavoured.
We do a complete calculation of the stochastic gravitational wave background to be expected from cosmic strings. We start from a population of string loops taken from simulations, smooth these by Lorentzian convolution as a model of gravitational bac k reaction, calculate the average spectrum of gravitational waves emitted by the string population at any given time, and propagate it through a standard model cosmology to find the stochastic background today. We take into account all known effects, including changes in the number of cosmological relativistic degrees of freedom at early times and the possibility that some energy is in rare bursts that we might never have observed.
201 - Tania Regimbau 2011
A gravitational wave stochastic background of astrophysical origin may have resulted from the superposition of a large number of unresolved sources since the beginning of stellar activity. Its detection would put very strong constrains on the physica l properties of compact objects, the initial mass function or the star formation history. On the other hand, it could be a noise that would mask the stochastic background of cosmological origin. We review the main astrophysical processes able to produce a stochastic background and discuss how it may differ from the primordial contribution by its statistical properties. Current detection methods are also presented.
A stochastic gravitational wave background causes the apparent positions of distant sources to fluctuate, with angular deflections of order the characteristic strain amplitude of the gravitational waves. These fluctuations may be detectable with high precision astrometry, as first suggested by Braginsky et al. in 1990. Several researchers have made order of magnitude estimates of the upper limits obtainable on the gravitational wave spectrum Omega_gw(f), at frequencies of order f ~ 1 yr^-1, both for the future space-based optical interferometry missions GAIA and SIM, and for VLBI interferometry in radio wavelengths with the SKA. For GAIA, tracking N ~ 10^6 quasars over a time of T ~ 1 yr with an angular accuracy of Delta theta ~ 10 mu as would yield a sensitivity level of Omega_gw ~ (Delta theta)^2/(N T^2 H_0^2) ~ 10^-6, which would be comparable with pulsar timing. In this paper we take a first step toward firming up these estimates by computing in detail the statistical properties of the angular deflections caused by a stochastic background. We compute analytically the two point correlation function of the deflections on the sphere, and the spectrum as a function of frequency and angular scale. The fluctuations are concentrated at low frequencies (for a scale invariant stochastic background), and at large angular scales, starting with the quadrupole. The magnetic-type and electric-type pieces of the fluctuations have equal amounts of power.
We revisit the possibility and detectability of a stochastic gravitational wave background (SGWB) produced by a cosmological population of newborn neutron stars (NSs) with r-mode instabilities. We show that the resultant SGWB is insensitive to the ch oice of CSFR models, but depends strongly on the evolving behavior of CSFR at low redshifts. Our results show that the dimensionless energy density $Omega_{rm{GW}}$ could have a peak amplitude of $simeq (1-3.5) times10^{-8}$ in the frequency range $(200-1000)$~Hz. However, such a high mode amplitude is unrealistic as it is known that the maximum value is much smaller and at most $10^{-2}$. A realistic estimate of $Omega_{rm{GW}}$ should be at least 4 orders of magnitude lower ($sim 10^{-12}$), which leads to a pessimistic outlook for the detection of r-mode background. We consider different pairs of terrestrial interferometers (IFOs) and compare two approaches to combine multiple IFOs in order to evaluate the detectability of this GW background. Constraints on the total emitted GW energy associated with this mechanism to produce a detectable stochastic background are $sim 10^{-3} M_{odot} c^2$ for two co-located advanced LIGO detectors, and $2 times 10^{-5} M_{odot} c^2$ for two Einstein Telescopes. These constraints may also be applicable to alternative GW emission mechanisms related to oscillations or instabilities in NSs depending on the frequency band where most GWs are emitted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا