ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling the shock-cloud interaction in SN 1006: unveiling the origin of nonthermal X-ray and gamma-ray emission

69   0   0.0 ( 0 )
 نشر من قبل Marco Miceli
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The supernova remnant SN 1006 is a source of high-energy particles and its southwestern limb is interacting with a dense ambient cloud, thus being a promising region for gamma-ray hadronic emission. We aim at describing the physics and the nonthermal emission associated with the shock-cloud interaction to derive the physical parameters of the cloud (poorly constrained by the data analysis), to ascertain the origin of the observed spatial variations in the spectral properties of the X-ray synchrotron emission, and to predict spectral and morphological features of the resulting gamma-ray emission. We performed 3-D magnetohydrodynamic simulations modeling the evolution of SN 1006 and its interaction with the ambient cloud, and explored different model setups. By applying the REMLIGHT code on the model results, we synthesized the synchrotron X-ray emission, and compared it with actual observations, to constrain the parameters of the model. We also synthesized the leptonic and hadronic gamma-ray emission from the models, deriving constraints on the energy content of the hadrons accelerated at the southwestern limb. We found that the impact of the SN 1006 shock front with a uniform cloud with density 0.5 cm^-3 can explain the observed morphology, the azimuthal variations of the cutoff frequency of the X-ray synchrotron emission, and the shock proper motion in the interaction region. Our results show that the current upper limit for the total hadronic energy in the southwestern limb is 2.5e49 erg.



قيم البحث

اقرأ أيضاً

134 - M. Miceli , F. Acero , G. Dubner 2014
The supernova remnant SN 1006 is a powerful source of high-energy particles and evolves in a relatively tenuous and uniform environment, though interacting with an atomic cloud in its northwestern limb. The X-ray image of SN 1006 reveals an indentati on in the southwestern part of the shock front and the HI maps show an isolated cloud (southwestern cloud) having the same velocity as the northwestern cloud and whose morphology fits perfectly in the indentation. We performed spatially resolved spectral analysis of a set of small regions in the southwestern nonthermal limb and studied the deep X-ray spectra obtained within the XMM-Newton SN 1006 Large Program. We also analyzed archive HI data, obtained combining single dish and interferometric observations. We found that the best-fit value of the N_H derived from the X-ray spectra significantly increases in regions corresponding to the southwestern cloud, while the cutoff energy of the synchrotron emission decreases. The amount of the N_H variations corresponds perfectly with the HI column density of the southwestern cloud, as measured from the radio data. The decrease in the cutoff energy at the indentation clearly reveals that the back side of the cloud is actually interacting with the remnant. The southwestern limb therefore presents a unique combination of efficient particle acceleration and high ambient density, thus being the most promising region for gamma-ray hadronic emission in SN 1006. We estimate that such emission will be detectable with the Fermi telescope within a few years.
153 - Satoru Katsuda 2010
We investigate time variations and detailed spatial structures of X-ray synchrotron emission in the northeastern limb of SN 1006, using two Chandra observations taken in 2000 and 2008. We extract spectra from a number of small (about 10) regions. Aft er taking account of proper motion and isolating the synchrotron from the thermal emission, we study time variations in the synchrotron emission in the small regions. We find that there are no regions showing strong flux variations. Our analysis shows an apparent flux decline in the overall synchrotron flux of about 4% at high energies, but we suspect that this is mostly a calibration effect, and that flux is actually constant to about 1%. This is much less than the variation found in other remnants where it was used to infer magnetic-field strengths up to 1 mG. We attribute the lack of variability to the smoothness of the synchrotron morphology, in contrast to the small-scale knots found to be variable in other remnants. The smoothness is to be expected for a Type Ia remnant encountering uniform material. Finally we find a spatial correlation between the flux and the cut-off frequency in synchrotron emission. The simplest interpretation is that the cut-off frequency depends on the magnetic-field strength. This would require that the maximum energy of accelerated electrons is not limited by synchrotron losses, but by some other effect. Alternatively, the rate of particle injection and acceleration may vary due to some effect not yet accounted for, such as a dependence on shock obliquity.
105 - Satoru Katsuda 2008
We report on the first X-ray proper-motion measurements of the nonthermally-dominated forward shock in the northeastern limb of SN 1006, based on two Chandra observations taken in 2000 and 2008. We find that the proper motion of the forward shock is about 0.48 arcsec/yr and does not vary around the rim within the ~10% measurement uncertainties. The proper motion measured is consistent with that determined by the previous radio observations. The mean expansion index of the forward shock is calculated to be ~0.54 which matches the value expected based on an evolutionary model of a Type Ia supernova with either a power-law or an exponential ejecta density profile. Assuming pressure equilibrium around the periphery from the thermally-dominated northwestern rim to the nonthermally-dominated northeastern rim, we estimate the ambient density to the northeast of SN 1006 to be about 0.085/cm^3.
We report the results of an X-ray proper motion measurement for the NW rim of SN1006, carried out by comparing Chandra observations from 2001 and 2012. The NW limb has predominantly thermal X-ray emission, and it is the only location in SN1006 with s ignificant optical emission: a thin, Balmer-dominated filament. For most of the NW rim, the proper motion is about 0.30 arcsec/yr, essentially the same as has been measured from the H-alpha filament. Isolated regions of the NW limb are dominated by nonthermal emission, and here the proper motion is much higher, 0.49 arcsec/yr, close to the value measured in X-rays along the much brighter NE limb, where the X-rays are overwhelmingly nonthermal. At the 2.2 kpc distance to SN1006, the proper motions imply shock velocities of about 3000 km/s and 5000 km/s in the thermal and nonthermal regions, respectively. A lower velocity behind the H-alpha filament is consistent with the picture that SN1006 is encountering denser gas in the NW, as is also suggested by its overall morphology. In the thermally-dominated portion of the X-ray shell, we also see an offset in the radial profiles at different energies; the 0.5-0.6 keV peak dominated by O VII is closer to the shock front than that of the 0.8-3 keV emission--due to the longer times for heavier elements to reach ionization states where they produce strong X-ray emission.
We study a possible connection between different non-thermal emissions from the inner few parsecs of the Galaxy. We analyze the origin of the gamma-ray source 2FGL J1745.6-2858 (or 3FGL J1745.6-2859c) in the Galactic Center and the diffuse hard X-ray component recently found by NuSTAR, as well as the radio emission and processes of hydrogen ionization from this area. We assume that a source in the GC injected energetic particles with power-law spectrum into the surrounding medium in the past or continues to inject until now. The energetic particles may be protons, electrons or a combination of both. These particles diffuse to the surrounding medium and interact with gas, magnetic field and background photons to produce non-thermal emissions. We study the spectral and spatial features of the hard X-ray emission and gamma-ray emission by the particles from the central source. Our goal is to examine whether the hard X-ray and gamma-ray emissions have a common origin. Our estimations show that in the case of pure hadronic models the expected flux of hard X-ray emission is too low. Despite protons can produce a non-zero contribution in gamma-ray emission, it is unlikely that they and their secondary electrons can make a significant contribution in hard X-ray flux. In the case of pure leptonic models it is possible to reproduce both X-ray and gamma-ray emissions for both transient and continuous supply models. However, in the case of continuous supply model the ionization rate of molecular hydrogen may significantly exceed the observed value.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا