ﻻ يوجد ملخص باللغة العربية
Layered two-dimensional (2D) materials display great potential for a range of applications, particularly in electronics. We report the large-scale synthesis of thin films of platinum diselenide (PtSe2), a thus far scarcely investigated transition metal dichalcogenide. Importantly, the synthesis by thermal assisted conversion is performed at 400 {deg}C, representing a breakthrough for the direct integration of this novel material with silicon (Si) technology. Besides the thorough characterization of this new 2D material, we demonstrate its promise for applications in high-performance gas sensing with extremely short response and recovery times observed due to the 2D nature of the films. Furthermore, we realized vertically-stacked heterostructures of PtSe2 on Si which act as both photodiodes and photovoltaic cells. Thus this study establishes PtSe2 as a potential candidate for next-generation sensors and (opto-)electronic devices, using fabrication protocols compatible with established Si technologies.
Atomically thin PtSe2 films have attracted extensive research interests for potential applications in high-speed electronics, spintronics and photodetectors. Obtaining high quality, single crystalline thin films with large size is critical. Here we r
Few-layer PtSe2 films are promising candidates for applications in high-speed electronics, spintronics and photodetectors. Reproducible fabrication of large-area highly crystalline films is, however, still a challenge. Here, we report the fabrication
There is a renewed interest in photovoltaic solar thermal (PVT) hybrid systems, which harvest solar energy for heat and electricity. Typically, a main focus of a PVT system is to cool the photovoltaic (PV) cells to improve the electrical performance,
We investigate a vertically-stacked hybrid photodiode consisting of a thin n-type molybdenum disulfide (MoS$_{2}$) layer transferred onto p-type silicon. The fabrication is scalable as the MoS$_{2}$ is grown by a controlled and tunable vapor phase su
Chromia (Cr2O3) has been extensively explored for the purpose of developing widespread industrial applications, owing to the convergence of a variety of mechanical, physical and chemical properties in one single oxide material. Various methods have b