ﻻ يوجد ملخص باللغة العربية
The Zeeman splitting of the conduction band in the HgTe quantum wells both with normal and inverted spectrum has been studied experimentally in a wide electron density range. The simultaneous analysis of the SdH oscillations in low magnetic fields at different tilt angles and of the shape of the oscillations in moderate magnetic fields gives a possibility to find the ratio of the Zeeman splitting to the orbital one and anisotropy of g-factor. It is shown that the ratios of the Zeeman splitting to the orbital one are close to each other for both types of structures, with a normal and inverted spectrum and they are close enough to the values calculated within kP method. In contrast, the values of g-factor anisotropy in the structures with normal and inverted spectra is strongly different and for both cases differs significantly from the calculated ones. We believe that such disagreement with calculations is a result of the interface inversion asymmetry in the HgTe quantum well, which is not taken into account in the kP calculations.
Energy spectra both of the conduction and valence bands of the HgTe quantum wells with a width close to the Dirac point were studied experimentally. Simultaneous analysis of the Shubnikov-de Haas oscillations and Hall effect over a wide range of elec
Spin-orbit splitting of conduction band in HgTe quantum wells was studied experimentally. In order to recognize the role of different mechanisms, we carried out detailed measurements of the Shubnikov-de Haas oscillations in gated structures with a qu
We report on beating appearance in Shubnikov-de Haas oscillations in conduction band of 18-22nm HgTe quantum wells under applied top-gate voltage. Analysis of the beatings reveals two electron concentrations at the Fermi level arising due to Rashba-l
Zeeman splitting of quantum-confined states of excitons in InGaAs quantum wells (QWs) is experimentally found to depend strongly on quantization energy. Moreover, it changes sign when the quantization energy increases with a decrease in the QW width.
The realization of quantum spin Hall (QSH) effect in HgTe quantum wells (QWs) is considered a milestone in the discovery of topological insulators. The QSH edge states are predicted to allow current to flow at the edges of an insulating bulk, as demo